utilisés diffèrent notablement des compartiments « exacts »; l'erreur sur la période fondamentale n'est que de 1,3 % environ.

La stabilité de la méthode s'avère ainsi remarquable, puisque de grossières inexactitudes dans le tracé des sections (lignes d'égale dénivellation ζ) n'ont qu'une influence très faible sur la période obtenue, et ceci malgré le petit nombre de divisions utilisées.

CHAPITRE II.

LES SEICHES TRANSVERSALES DU LAC DE GENÈVE.

Comme pour l'étude des seiches longitudinales, le lac de Genève servira cette fois-ci encore de lac-témoin; les présents calculs ont surtout pour but de montrer le degré de précision avec lequel les méthodes décrites dans le chapitre précédent permettent de retrouver les résultats expérimentaux, établis par les observations, en même temps que d'éprouver la valeur pratique des différentes méthodes.

§ 1. RÉSULTATS DES OBSERVATIONS.

Les seiches transversales s'observent principalement dans deux régions du Grand-Lac : la partie sud-ouest de celui-ci, qui sera désignée pour la facilité sous le nom de « région Rolle-Thonon », et la partie centrale, appelée désormais « région Morges-Évian ».

Les seiches de la première région ont été observées depuis très longtemps; déjà F. A. FOREL (¹⁰¹), en 1891, considère leur existence comme bien établie et leur attribue une période d'environ sept minutes. Ceci est pleinement confirmé par des observations modernes : des enregistrements limnographiques, effectués en juillet-août 1950 et que le Service Fédéral des Eaux à Berne a bien voulu nous communiquer, montrent clairement l'existence d'une seiche transversale, de période voisine de sept minutes, dans toute la région depuis Saint-Sulpice jusqu'à Rolle; les observations manquent cependant, d'une part entre la ligne Cully-Meillerie et Saint-Sulpice, et d'autre part entre la ligne Coppet-Hermance et Rolle. Les dénivellations paraissant en phase à Saint-Prex et à Thonon, il y a lieu de croire qu'il s'agit d'une uninodale transversale possédant au moins un nœud longitudinal.

Quant aux seiches du renflement Morges-Évian, leur existence était elle aussi déjà bien connue de F. A. FOREL (¹⁰²) qui leur attribuait une période

⁽¹⁰¹⁾ FOREL, F. A., Le Léman, II, p. 107.

⁽¹⁰²⁾ ID., *ibid*.

voisine de 10 min. 18 sec.; ceci également est confirmé par les observations plus récentes. Outre les seiches de Rolle-Thonon et de Morges-Évian, de périodes respectives de 7 min. et de 10,3 min., on connaît encore des seiches plus locales et de périodes plus courtes. C'est ainsi par exemple que l'examen des limnogrammes du Service Fédéral des Eaux décèle l'existence, entre Cully et Meillerie, d'une seiche de période voisine de 5,3 min., qui est peut-être la même que celle, de période identique, signalée par F. A. FOREL (¹⁰³) comme « irrégulière et rare » entre Morges et Évian. Sur les mêmes enregistrements on relève encore des oscillations de très courte période et de très faible amplitude, se manifestant sous forme d'une très fine dentelure le long des courbes, à Rolle, Hermance, Coppet, Bellevue, Cully, Chillon, Saint-Sulpice; les périodes vont de 1,5 à 3,0 min. environ, et l'amplitude est de l'ordre de quelques millimètres.

Les données d'observation dont nous disposons pour le moment étant insuffisantes pour entreprendre l'étude détaillée de ces seiches locales, et le but du présent chapitre étant seulement de vérifier la précision et la stabilité de nos méthodes de calcul, il paraît inutile de nous occuper davantage de ces seiches locales de courte période. Nous nous bornerons donc à l'étude des deux « grandes » seiches de Rolle-Thonon et de Morges-Évian.

§ 2. RECHERCHE THÉORIQUE DES ZONES OÙ LES SEICHES TRANSVERSALES PEUVENT APPARAÎTRE.

On a exposé plus haut (pp. 182 sqq.) comment, à l'aide d'une profondeur « réduite » H(x) (voir définition p. 182) — ou, plus simplement, à l'aide de la profondeur moyenne $\overline{h}(x) \equiv S(x)/b(x)$ — il suffit de construire la courbe d'abscisse x et d'ordonnée $\pi^2 H(x)/b^2(x)$, ou $\pi^2 \overline{h}(x)/b^2(x)$, pour repérer les régions où peuvent apparaître des seiches transversales : ces régions sont celles où la fonction accuse un minimum; en effet, c'est seulement autour des minima de celle-ci que l'expression $\omega^2/gH(x) - r^2\pi^2/b^2(x)$ ou $\omega^2/g\overline{h}(x) - r^2\pi^2/b^2(x)$ pourra être positive (ω^2 étant convenablement choisi), rendant ainsi w(x), amplitude de la seiche, oscillante autour des minima et exponentielle amortie « loin » de ceux-ci : c'est ce qui résulte de l'étude de l'équation

$$w'' + \left[\frac{\omega^2}{gh(x)} - \frac{r^2 \pi^2}{b^2(x)}\right] w = 0, \qquad (VI.14)$$

utilisée dans la théorie des seiches transversales (cf. pp. 182 sqq.).

(103) ID., op. cit., II, p. 150.

Voici d'abord une table des données numériques utilisées dans le présent chapitre, du moins pour la solution de l'équation en w ci-dessus (VI.14). Les sections transversales sont les mêmes que celles employées pour le calcul des seiches longitudinales; rappelons qu'elles sont numérotées d'est en ouest. La comparaison avec la table des pages 91-92 fera apercevoir des différences pour les valeurs de b(x) aux sections n^{os} 1, 2, 11, 16, 18, 21, 22 : les régions « rognées » pour l'étude des seiches longitudinales ont été rétablies pour le calcul des seiches transversales, ainsi qu'il était naturel de le faire. Quant à la profondeur réduite H, elle a été calculée selon le procédé préconisé page 182.

$\substack{\text{Section}\\ \mathbf{n}^{0}}$	Δx_{\perp}	x	$\overline{h}(x)$	<i>b</i> (<i>x</i>)	$\pi^2/b^2(x)$	$\pi^2 \overline{h}/b^2$	$\mathbf{H}(x)$	$\pi^{2}\mathrm{H}/b^{2}$
	km	km	m	km	10 ⁻¹⁰ cm ⁻²	10 ⁻⁸ cm ⁻¹	m	10 ⁻⁸ cm ⁻¹
1	1.5	1.5	49	3.6	0.7615	37.31	46	35.03
2	3	4.5	87	5.6	0.3147	27.38	83	26.12
~ 3	3	7.5	153	7.8	0.1622	24.82	168	27.25
4	3	10.5	193	8.9	0.1246	24.05	221	27.54
5	3	13,5	225	8.0	0.1542	34.69	234	36.08
Ū		10,0	~~~	0,0	0,1012	01,00	201	00,00
6	3	16.5	238	8.7	0.1304	31.04	267	34.82
7	3	19.5	236	10.0	0.0987	23.29	282	27.83
8	3	22.5	239	11.0	0.0816	19.50	282	23.01
9	3	25.5	223	12.1	0.0674	15.03	260	17.52
10	3	28.5	225	11.9	0.0697	15.68	268	18.68
10		,-				, , , , , , , , , , , , , , , , , , , ,		
11	3	31.5	189	13,8	0,0504	9,526	213	10,74
12	3	34.5	177	10,1	0,0968	17,13	177	17,13
13	3	37.5	173	10.1	0,0968	16.75	205	19.84
14	3	40.5	134	10,9	0,0831	11.14	162	13.46
15	3	43.5	105	12.1	0.0674	7.077	126	8,492
	_			,				- /
16	3	46,5	68	12,4	0,0642	4,366	78	5,008
17	3	49,5	46	6,3	0,2487	11,44	54	13,43
18	3	52,5	45	4,4	0,5098	22,94	50	25,49
19	3	55,5	39	4,2	0,5595	21,82	39	21,82
20	3	58,5	42	4,4	0,5098	21,41	49	24,98
21	3	61,5	42	4,2	0,5595	23,50	46	25,74
22	3,1	64,6	39	4,3	0,5338	20,82	51	27,22
23	3	67,6	30	2,2	2,0392	61,18	32	65,25
24	3	70,6	16	3,0	1,0966	17,55	21	23,03
25	3,3	73,9	0	0	· _	·		-

Lac de Genève. Données numériques.

Les courbes ci-après présentent des minima nettement accusés dans les régions de Saint-Gingolph, Morges et Rolle. Des seiches transversales doivent donc être observables dans ces trois secteurs; dans les pages qui suivent, nous nous occuperons seulement des deux derniers.

FIG. 39. — Lac de Genève. Recherche des seiches transversales.

Courbes $\pi^2 h/b^2$ et $\pi^2 H/b^2$, dont les minima caractérisent les zones où peuvent apparaître des seiches transversales.

§ 3. CALCUL DES SEICHES PAR LA MÉTHODE DE L'ÉQUATION EN w(x).

Avant d'effectuer des calculs numériques, voyons comment les conditions de lente variation de b(x) et b'(x) (0x étant le Talweg) sont réalisées dans le lac de Genève, en nous bornant ici aux seiches à un seul nœud transversal (r=1).

Pour mémoire, rappelons ces conditions :

On doit avoir, pour pouvoir utiliser la méthode de l'équation en w(x):

$${b'\over b}$$
 et ${b''\over b'} \ll {2\,\pi\over\Lambda}$,

où $\Lambda =$ longueur d'onde de la seiche transversale, c'est-à-dire 2b(x).

Les conditions ci-dessus peuvent aussi s'écrire :

$$rac{b'}{b}\llrac{2\,\pi}{\Lambda} \quad ext{ et } \quad rac{b''}{b'}\cdotrac{b'}{b}\equivrac{b''}{b}\llrac{4\,\pi^2}{\Lambda^2},$$

ou, puisque $\Lambda = 2b$:

 $b' \ll \pi$ et $b'' \ll \pi^2 / b$.

Aux endroits de variation rapide de la largeur (les valeurs de $\Delta b/\Delta x$, $\Delta^2 b/\Delta x^2$ et π^2/b y sont imprimées en italique), les conditions ci-dessus sont mal réalisées. Il faudra donc s'attendre à obtenir par la méthode de l'équation en w(x) des résultats en accord plutôt médiocre avec les données de l'observation.

Section	A 7	A7 / A	A 07	A 91 / A 9	9 / 7
n ^o	Δb	$\Delta b / \Delta x$	$\Delta^2 b$	$\Delta^{2} \partial / \Delta x^{2}$	π^{*}/b
	km	nombre pur	km	<u>km⁻¹</u>	<u>km⁻¹</u>
0					
0	3,6	[2,400]		0 711	0.47
1	2,0	0,667	-1,6	-0,711	2,47
2	2,2	0,733	0,2	, 0,022	1,76
3	1,1	0,367	-1,1	-0,122	1,27
4	-0.9	-0.300	-2,0	-0,222	1,11
5	0.7	0.233	1,6	0,178	1,23
6	4.3	0,238	0,6	0,067	1,13
7	1,5	0,222	-0,3	-0,033	0,99
8	1,0	0,333	0,1	0,011	0,90
9	1,1	0,367	-1,3	-0,144	0,82
10	-0,2	-0,067	2,1	0,233	0,83
11	1,9	0,633	-5,6	-0,622	0,72
12	-3,7	-1,233	3.7	0.411	0.98
13	0	0	0.8	0.089	0.98
10	0,8	0,267	0,6	0,000	0,91
14	1,2	0,400	0,4	0,044	0,91
15	0,3	0,100	-0,9	-0,100	0,82
16	-6,1	-2,033	-6,4	-0,711	0,80
17	-1,9	-0,633	4,2	0,467	1,57
18	-0.2	-0.067	1,7	0,189	2,24
19	0.2	0.067	0,4	0,044	2,35
20	-0.2	-0.067	-0,4	-0,044	2,24
21	-0,2	-0,007	0,3	0,033	2,35
22	0,1	0,032	-2,2	-0,229	2,30
23	-2,1	-0,700	2,9	0,322	4,49
24	0,8	0,267	-3,8	-0,422	3,29
25	-3,0	-0,909	·	-	-
~0					

Table auxiliaire.

A. Région de Morges-Évian. — Afin de nous assurer si la fonction w(x) présente une allure satisfaisante « loin » de la région où doivent apparaître les seiches, l'intégration de l'équation (VI.14) se fera sur toute la longueur du lac, et l'on emploiera successivement la profondeur « réduite » H(x) et la profondeur moyenne $\tilde{h}(x)$. La formule de diffé-

rences finies pour l'intégration numérique de l'équation différentielle est :

 $w_{n+1} = 2w_n - w_{n-1} + \Delta x^2 \cdot w''_n$ avec Δx constant, et $w_n \equiv w(x_n)$,

c'est-à-dire, en éliminant w''(x) à l'aide de l'équation (VI.14) elle-même :

$$w_{n-4} = 2w_n - w_{n-4} + \Delta x^2 \cdot w_n \cdot \mathbf{Q}_n,$$

Q(x) désignant l'expression

$$\frac{\pi^2}{b^2(x)}-\frac{\omega^2}{gh(x)},$$

où h(x) représente, suivant les cas, H(x) ou $\overline{h}(x)$.

Les résultats des observations (T = 10,3 min.) fournissent une première indication quant aux valeurs de $\omega^2 = 4 \pi^2/T^2$ à essayer. Comme on le fait remarquer pp. 183 et 226, chaque essai nécessite la construction d'une nouvelle table de la fonction Q(x).

Voici les résultats des derniers essais, effectués d'abord avec h(x) = H(x), ensuite avec $h(x) = \overline{h}(x)$.

La fonction w(x) a les dimensions physiques d'une longueur; toutefois, le choix de son unité est entièrement libre, et l'on n'a pas à tenir compte des ordres de grandeur de Q(x) ou de la profondeur. C'est ce qui sera rappelé dans les tableaux ci-après par la notation conventionnelle : 10^n cm (n = nombre réel quelconque). Les valeurs initiales de w(x), 0 et 1, sont chaque fois prises arbitrairement (cf. p. 183).

Section n ^o	$\omega^2 / g \operatorname{H}(x)$	$\mathrm{Q}(x)$	<i>w</i> (<i>x</i>)
	10^{-10} cm^{-2}	$10^{-10} \mathrm{ cm^{-2}}$	10 ⁿ cm
1		_	0
2	0,1327	0,1820	1
3	0,0656	0,0966	3,6380
4	0,0499	0,0747	9,4389
5	0,0471	0,1071	21,5856
6	0,0412	0,0892	54,5387
7	0,0391	0,0596	131,2755
8	0,0391	0,0425	278,4285
9	0,0424	0,0250	532,0804
10	0,0410	0,0287	905,4504
11	0,0517	-0,0013	1.512,6982
12	0,0622	0,0346	2.102,2474
13	0,0537	0,0431	3.346,4364
14	0,0680	0,0151	5,888,7081
15	0.0874	-0,0200	9.231.2552

1. h(x) = H(x). Essai avec T = 604,5 sec.

Section nº	$\omega^2 / g \mathbf{H}(x)$	$\mathbf{Q}(x)$	w(x)
	10 ⁻¹⁰ cm ⁻²	10^{-10} cm^{-2}	10^n cm
16	0.1412	-0.0770	10.912.1764
17	0,2040	0,0447	5.030,9594
18	0,2202	0,2896	1.173,6974
19	0,2824	0,2771	375,5603
20	0,2247	0,2851	514,0330
21	0,2394	0,3201	1.971,4630
22	0,2160	0,3178	
23	0,3442	1,6950	
24			

Essai avec T = 604, 2 sec.

$\frac{\text{Section}}{n^{o}}$	$\omega^2/g\mathbf{H}(x)$	Q(x)	w(x)
	10^{-10} cm ⁻²	10 ⁻¹⁰ cm ⁻²	10 ⁿ cm
1	_		0
2	0,1328	0.1819	1
3	0.0657	0,0965	3.6371
4	0.0499	0.0747	9.4330
5	0,0471	0,1071	21,5707
6	0,0413	0,0891	54,5004
7	0,0391	0,0596	131,1340
8	0,0391	0,0425	278,1079
9	0,0424	0,0250	531,4581
10	0,0411	0,0286	904,3864
11	0,0518	-0,0014	1.510,1038
12	0,0622	0,0346	2.096,7939
13	0,0537	0,0431	3.336,4256
14	0,0681	0,0150	5.870,2568
15	0,0875	-0,0201	9.196,5727
16	0,1413	-0,0771	10.859,2286
17	0,2042	0,0445	4.986,6658
18	0,2205	0,2893	1.111,2627
19	0,2827	0,2768	129,2543
20	0,2249	0,2849	-530,7558
21	0,2396	0,3199	—
22	0,2162	0,3176	—
23	0,3445	1,6947	—
24	. —		—

La comparaison des dernières valeurs de w(x) de ces deux essais illustre l'extrême sensibilité de la méthode : un écart de 0,3 sec. entre les deux valeurs d'essai de T suffit à modifier considérablement l'allure de la fonction w(x) dans

les dernières divisions du lac (partie sud du Petit-Lac). Il est évidemment superflu de poursuivre les essais, l'amélioration de la période T que l'on obtiendrait ainsi étant entièrement illusoire.

Le graphique ci-dessous montre la distribution de l'amplitude w(x) tout le long du lac. On remarque que le maximum d'amplitude se trouve à une dizaine de km à l'ouest de Morges, ce qui indique un accord plutôt médiocre avec les données expérimentales. La seiche est zéro-nodale longitudinalement et uninodale transversalement.

FIG. 40. — Lac de Genève. Distribution de l'amplitude w(x) de la seiche transversale de dix minutes. Courbe I : T = 604,5 sec; courbe II : T = 604,2 sec. [Profondeur réduite : h(x) = H(x).]

Section n ^o	$\omega^2 \left/ \overline{gh}(x) \right.$	$\mathbf{Q}(x)$	w(x)
	10 ⁻¹⁰ cm ⁻²	10^{-10} cm^{-2}	10 ⁿ cm
1	_		0
2	0,1085	0,2062	1
3	0,0617	0,1005	3,8558
4	0,0489	0,0757	10,1992
5	0,0420	0,1122	23,4913
6	0,0397	0,0907	60,5049
7	0,0400	0,0587	146,9086
8	0,0395	0,0421	310,9241
9	0,0423	0,0251	592,7487
10	0,0420	0,0277	1.008,4752
11	0,0500	0,0004	1.675,6146

2. $h(x) = \overline{h}(x)$. Essai avec T = 653,0 sec.

Section nº	$\omega^2 \left/ g \widetilde{h}(x) \right.$	$\mathbf{Q}(x)$	w(x)
	10 ⁻¹⁰ cm ⁻²	10 ⁻¹⁰ cm ⁻²	10 ⁿ cm
49	0 0522	0.0495	9 949 7969
12	0,0546	0,0433	2.340,7802
15	0,0704	0,0422	7 034 2436
15	0,0899	-0,0225	10.924,5873
16	0,1388	-0,0746	12.605,7321
17	0,2052	0,0435	5.823,3884
18	0,2097	0,3001	1.320,9013
19	0,2420	0,3175	386,0363
20	0,2247	0,2851	554,2695
21	0,2247	0,3348	<i>D</i>
22	0,2420	0,2918	
23	0,3146	1,7246	
24	·		

Essai avec T = 652,7 sec.

Section nº	$\omega^2 / \overline{gh}(x)$	Q(x)	w(x)
	10^{-10} cm^{-2}	10 ⁻¹⁰ cm ⁻²	10^n cm
1			0
2	0.1086	0.2061	1
3	0,0618	0,1004	3.8549
4	0.0490	0.0756	10,1931
5	0,0420	0,1122	23,4667
6	0.0397	0.0907	60,4370
7	0.0400	0.0587	146.7420
8	0,0395	0,0421	310,5708
9	0.0424	0,0250	592,0749
10	0,0420	0,0277	1.006,7959
11	0,0500	0,0004	1.672,5111
12	0,0534	0,0434	2.344,2473
13	0,0546	0,0422	3.931,6465
14	0,0705	0,0126	7.012,2850
15	0,0900	-0,0226	10.888,1166
16	0,1389	-0,0747	12.549,3053
17	0.2053	0,0434	5.773,5960
18	0,2099	0,2999	1.253,0533
19	0,2422	0,3173	114,6268
20	0,2249	0,2849	-696,4599
21	0.2249	0,3346	
22	0.2422	0,2916	
23	0.3149	1,7243	
24			

Des conclusions analogues à celles de la page 208 se dégagent de la comparaison des valeurs de w(x) obtenues à l'aide des deux dernières valeurs d'essai de T. L'allure générale de la fonction w(x) obtenue en prenant $h(x) = \overline{h}(x)$ ne diffère guère de celle trouvée avec h(x) = H(x), ainsi qu'on peut le voir sur le graphique ci-dessous; notamment, le maximum d'amplitude des seiches concorde à nouveau assez mal avec l'observation.

FIG. 41. — Lac de Genève. Distribution de l'amplitude w(x) de la seiche transversale de dix minutes. Courbe I : T = 653 sec; courbe II : T = 652,7 sec. [Profondeur moyenne : $h(x) = \overline{h}(x)$.]

Les périodes obtenues respectivement avec h(x) = H(x) et $\overline{h(x)}$, sont (en chiffres ronds) de 604 et de 653 sec., les écarts par rapport à la période moyenne observée (618 sec.) sont ainsi de -2,3 % et 5,7 % environ. L'emploi de la profondeur réduite fournit donc, du moins dans ce cas-ci, un résultat plus conforme aux données expérimentales.

B. Région de Rolle-Thonon. — Tout comme pour la région de Morges-Évian, l'intégration de l'équation (VI.14) se fera sur toute la longueur du lac, et l'on emploiera à nouveau successivement la profondeur « réduite » H(x) et la profondeur moyenne $\bar{h}(x)$.

La formule de différences finies utilisée est la même que précédemment. Voici les résultats numériques.

Section	$\omega^2 / g \mathbf{H}(x)$	Q(x)	w(x)
11-	10^{-10} cm^{-2}	10^{-10} cm^{-2}	10^n cm
1			0
2	0,2748	0,0399	1
3	0,1359	0,0263	2,3591
4	0,1033	0,0213	4,2766
5	0,0975	0,0567	7,0139
6	0,0854	0,0450	13,3304
7	0,0809	0,0178	25,0457
8	0,0809	0,0007	40,7733
9	0,0878	-0,0204	56,7578
10	0,0850	-0,0153	62,3216
11	0.1071	-0.0567	59,3037
12	0.1288	-0.0320	26,0231
13	0.1112	-0.0144	-14,7522
14	0.1408	-0.0577	-53,6156
15	0,1810	-0,1136	-64,6364
16	0 9994	-0 2282	-9 5729
17	0,4225	-0 1738	65,1514
18	0,4562	0.0536	37,9659
19	0,5850	-0.0255	29,0952
20	0,4655	0,0443	13,5472
	·		
21	0,4959	0,0636	3,4005
22	0,4474	0,0864	-4,7998
23	0,7130	1,3262	
24	·	· ·	

1. h(x) = H(x). Essai avec T = 420 sec.

.

Essai avec T = 420,5 sec.

Section nº	$\omega^2 / g H(x)$	Q(x)	w(x)
	10 011		
1		_	0
2	0,2742	0,0405	1
. 3	0,1356	0,0266	2,3645
4	0,1030	0,0216	4,2951
5	0,0972	0,0570	7,0596
6	0,0852	0,0452	13,4457
7	0,0807	0,0180	25,3015
8	0,0807	0,0009	41,2561
9	0,0876	-0,0202	57,5449
10	0,0848	-0,0151	63,3720
11	0,1069	-0,0565	60,5868

Section n ^o	$\omega^2/g\mathbf{H}(x)$	Q(x)	w(x)
	10 ⁻¹⁰ cm ⁻²	10 ⁻¹⁰ cm ⁻²	10 ¹⁰ cm
12	0,1285	-0,0317	26,9932
13	0,1109	-0,0141	-14,3016
14	0,1405	-0,0574	-53,7815
15	0,1806	-0,1132	-65,4779
16	0,2917	-0,2275	-10,4654
17	0,4215	-0,1728	65,9750
18	0,4551	0,0547	39,8111
19	0,5836	-0,0241	33,2462
20	0.4643	0,0455	19,4702
	2	,	
21	0,4948	0,0647	13,6672
22	0,4464	0,0874	15,8226
23	0.7113	1,3279	
24			

La conclusion à tirer de la comparaison des fonctions w(x) obtenues par ces deux essais est toujours la même que précédemment : l'extrême sensibilité de la méthode rend illusoire toute amélioration de T à l'aide de nouveaux essais. Le graphique ci-dessous montre que la seiche de sept minutes trouvée ici est binodale longitudinalement; transversalement, elle est uninodale, comme la précédente de 10 minutes. Sa plus grande amplitude se place dans le renflement Rolle-Thonon, bien que son action ne soit nullement négligeable dans la région Morges-Évian.

Pour juger de la conformité de ces résultats avec les données expérimentales, il faudrait pouvoir disposer d'observations plus complètes que celles qui nous ont été communiquées.

FIG. 42. — Lac de Genève. Distribution de l'amplitude w(x) de la seiche transversale de sept minutes. Courbe I : T = 420,5 sec; courbe II : T = 420 sec. [Profondeur réduite : h(x) = H(x).]

Section n ^o	$\omega^2/g\overline{h}(x)$	Q(x)	<i>w</i> (<i>x</i>)
	10 ⁻¹⁰ cm ⁻²	10 ⁻¹⁰ cm ⁻²	$10^n \mathrm{cm}$
1			0
2	0,2254	0,0893	1
3	0,1282	0,0340	2,8037
4	0,1016	0,0230	5,4653
5	0,0872	0,0670	9,2582
6	0,0824	0,0480	18,6338
7	0,0831	0,0156	36,0592
8	0,0821	-0,0005	58,5473
9	0,0879	-0,0205	80,7719
10	0,0872	-0,0175	88,0941
11	0,1038	-0,0534	81,5415
12	0,1108	-0,0140	35,8001
13	0,1134	-0,0166	-14,4521
14	0,1463	-0,0632	-62,5452
15	0,1868	-0,1194	-75,0626
16	0,2884	-0,2242	6,9177
17	0,4263	-0,1776	75,1857
18	0,4358	0,0740	37,1123
19	0,5028	0,0567	23,7557
20	0,4669	0,0429	22,5216
21	0,4669	0,0926	
22	0,5028	0,0310	-
23	0,6537	1,3855	
24			

2. $h(x) = \overline{h}(x)$. Essai avec T = 453 sec.

Essai avec T = 452,4 sec.

Section n ^o	$\omega^2/g\bar{h}(x)$	$\mathbf{Q}(x)$	w(x)
	10 ⁻¹⁰ cm ⁻²	10 ⁻¹⁰ cm ⁻²	10" cm
1	_	K	0
2	0,2260	0,0887	1
3	0,1286	0,0336	2,7983
4	0,1019	0,0227	5,4428
5	0,0874	0,0668	9,1993
6	0,0826	0.0478	18,4864
7	0,0833	0,0154	35,7263
8	0,0823	-0,0007	57,9179
9	0,0882	-0,0208	79,7446
10	0,0874	-0,0177	86,6431
11	0,1041	-0,0537	79,7394
12	0.1111	-0.0143	34,2976

Section n ^o	$\omega^2 / g \overline{h}(x)$	$\mathbf{Q}(x)$	w(x)
	10^{-10} cm^{-2}	10 ⁻¹⁰ cm ⁻²	10 ⁿ cm
13	0,1137	-0,0169	-15,5583
14	0,1467	-0,0636	-63,0478
15	0,1873	-0,1199	-74,4487
16	0,2892	-0,2250	-5,5120
17	0,4275	-0,1788	74,5865
18	0,4369	0,0729	34,6604
19	0,5042	0,0553	17,4750
20	0,4681	0,0417	8,9869
21	0,4681	0,0914	3,8716
22	0,5042	0,0296	1,9411
23	0,6554	1,3838	0,5277
24	·		

Pour les conclusions à tirer de ces deux essais, cf. page 210. Ici encore, l'allure de w(x) est peu affectée par la substitution de $\overline{h}(x)$ à H(x); en ce qui concerne la période, le résultat est nettement meilleur avec la profondeur « réduite » (période pratiquement exacte) qu'avec la profondeur moyenne (erreur d'environ 7,7 % par excès). Le graphique ci-dessous donne les distributions des amplitudes correspondant aux deux derniers essais.

C. — Les deux seiches qui viennent d'être obtenues en A et B étant respectivement une zéro-nodale et une binodale (longitudinalement), il paraît opportun de compléter cette étude du lac de Genève en recherchant la seiche uninodale, de période intermédiaire (comprise entre 7 et 10 minutes) et non encore relevée dans les rapports des observateurs. Utilisons à nouveau successivement la profondeur « réduite » H(x) et la profondeur moyenne $\overline{h}(x)$.

Voici les résultats numériques des derniers essais.

Section			
nº	$\omega^2/g\mathbf{H}(x)$	$\mathbf{Q}(x)$	w(x)
	10 ⁻¹⁰ cm ⁻²	10 ⁻¹⁰ cm ⁻²	10^n cm
1		_	0
2	0,2241	0,0906	1
3	0,1107	0,0515	2,8154
4	0,0841	0,0405	5,9357
5	0,0795	0,0747	11,2196
6	0.0697	0.0607	24,0464
7	0.0659	0.0328	50,0097
8	0,0659	0.0157	90.7359
9	0.0716	-0.0042	144,2831
10	0,0694	0,0003	192,3764
11	0.0874	-0.0370	240.9891
12	0,1050	-0,0082	209.3524
13	0.0907	0,0061	162,2655
14	0.1148	-0.0317	124,0870
15	0,1475	-0,0801	50,5065
16	0.2383	-0.1741	59,4841
17	0.3444	-0.0957	-76,2691
18	0.3719	0,1379	-27.3635
19	0.4769	0,0826	-12,4187
20	0,3796	0,1302	- 6,7060
21	0.4043	0.1552	- 8,8514
22	0.3646	0.1692	(continue à décroître)
23	0.5811	1,4581	
24			
~1			

1. h(x) = H(x). Essai avec T = 465,2 sec.

Essai avec T = 465,1 sec.

Section	$\omega^2/g H(x)$	Q(x) 10^{-10} cm^{-2}	<i>w</i> (<i>x</i>)
n ^o	10^{-10} cm^{-2}		10 ^{<i>n</i>} cm
1 2 3	0,2241 0,1107	0,0906 0,0515	0 1 2,8154

Section n ^o	$\omega^2/g\mathbf{H}(x)$	Q(x)	w(x)
	10^{-10} cm^{-2}	10 ⁻¹⁰ cm ⁻²	10 ⁿ cm
4	0,0842	0,0404	5,9357
5	0,0795	0,0747	11,2142
6	0,0697	0,0607	24,0320
7	0,0660	0,0327	49,9785
8	0,0660	0,0156	90,6337
9	0,0716	-0,0042	144,0139
10	0,0694	0,0003	191,9504
11	0,0874	-0,0370	240,4052
12	0,1051	-0,0083	208,8051
13	0,0907	0,0061	161,6073
14	0,1148	. –0,0317	123,2817
15	0,1476	-0,0802	49,7838
16	0,2384	-0,1742	-59,6480
17	0,3445	-0,0958	-75,5637
18	0,3720	0,1378	-26,3284
19	0,4770	0,0825	- 9,7456
20	0,3796	0,1302	- 0,3989
21	0,4044	0,1551	8,4804
22	0,3647	0,1691	(continue à croître)
23	0,5812	1,4580	_
24			

Comme il a été souligné plus haut, l'extrême sensibilité de la méthode rend illusoire toute tentative d'amélioration de T à l'aide de nouvelles interpolations. Les maxima d'amplitude se placent dans le renflement Morges-Évian et à l'entrée du Petit-Lac.

2.	h(x)	=	h(x).	Essai	\mathbf{avec}	T =	495,3	sec.

Section n ^o	$\omega^2/g\overline{h}(x)$	Q(x)	w(x)
	10^{-10} cm^{-2}	10 ⁻¹⁰ cm ⁻²	$10^n \mathrm{cm}$
1			0
2	0,1884	0,1263	1
3	0,1071	0,0551	3,1367
4	0,0849	0,0397	6,8289
5	0,0729	0,0813	12,9611
6	0,0689	0,0615	28,5769
7	0,0695	0,0292	60,0100
8	0,0686	0,0130	107,2137
9	0,0735	-0,0061	166,9614
10	0,0729	-0,0032	217,5429

Section n ^o	$\frac{\omega^2}{gh}(x)$	Q(x)	w(x)
	10 011	10 011	10 011
11 12	0,0867 0.0926	-0,0363 0,0042	261,8592 220,6261
13	0.0947	0.0021	187.7327
14	0,1223	-0,0392	158,3874
15	0,1561	-0,0887	73,1630
16	0,2411	-0,1769	- 70,4674
17	0,3563	-0,1076	-101,9067
18	0,3642	0,1456	- 34,6596
19	0,4203	0,1392	- 12,8304
20	0,3902	0,1196	- 7,0751
21	0,3902	0,1693	- 8,9354
22	0,4203	0,1135	- 24,4106
23	0,5463	1,4929	(continue à décroître)
24			_

Essai avec T = 495,4 sec.

Section	$\omega^2/a \vec{h}(x)$	$\Omega(r)$	w(x)
nº		Q(w)	u(u)
	10 ⁻¹⁰ cm ⁻²	10^{-10} cm^{-2}	10 ⁿ cm
1			0
2	0,1885	0,1262	1
3	0,1072	0,0550	3,1358
4	0,0849	0,0397	6,8238
5	0,0729	0,0813	12,9499
6	0,0689	0.0615	28,5514
7	0,0695	0.0292	59,9561
8	0.0686	0,0130	107,1173
9	0.0735	-0.0061	166.8112
10	0,0729	-0,0032	217,3472
11	0,0868	-0,0364	261,6236
12	0,0926	0,0042	220,1921
13	0,0948	0,0020	187,0839
14	0,1224	-0,0393	157,3432
15	0,1562	-0,0888	71,9502
16	0,2412	-0,1770	- 70,9454
17	0,3565	-0,1078	-100,8250
18	0,3645	0,1453	-32,8842
19	0,4205	0,1390	- 7,9461
20	0,3904	0,1194	7,0517
21	0.3904	0.1691	(continue à croître)
~1 99	0 4205	0 1133	
~~ 93	0,5466	4 4996	
23		1,4520	
~4			

.

Ici encore, il est vain d'espérer améliorer le comportement de la fonction w(x) par interpolation sur les valeurs de T ou de ω^2/g ; les valeurs d'essai sont trop voisines pour que cette amélioration ait un sens.

L'allure générale de la fonction w(x) ne varie guère suivant que l'on prend h(x) = H(x) (profondeur « réduite ») ou $h(x) = \overline{h}(x)$ (profondeur moyenne). L'écart entre les deux périodes est, comme d'habitude, de l'ordre de 6 %; faute de données expérimentales, la période obtenue à l'aide de la profondeur réduite sera présumée la meilleure : T = 465 sec. soit 7 min. 45 sec.

Pour terminer, voici les deux graphiques habituels.

FIG. 44. — Lac de Genève.

Distribution de l'amplitude w(x) de la seiche transversale de huit minutes. Courbe I : T = 465,2 sec; courbe II : T = 465,1 sec. [Profondeur réduite : h(x) = H(x).]

N.B. — L'axe des x, au lieu d'être gradué en km, comme d'habitude, porte (accidentellement) les numéros des sections droites, notés en chiffres romains.

Distribution de l'amplitude de la seiche transversale de huit minutes. Courbe I : T = 495,3 sec; courbe II : T = 495,4 sec. [Profondeur moyenne : $h(x) = \tilde{h}(x)$.] N.B. — Même remarque que fig. 44.

§ 4. CALCUL DES SEICHES PAR LA NOUVELLE MÉTHODE DES COORDONNÉES CURVILIGNES.

A. Région de Morges-Évian. — Afin de nous rendre mieux compte de la stabilité de la méthode, les calculs relatifs à cette portion du lac ont été effectués deux fois, la famille de courbes $\psi = \text{constante}$ étant différente dans les deux cas, ainsi que les limites conventionnelles du bassin censé être affecté par les seiches.

Ainsi qu'il a été expliqué plus haut (cf. p. 190), les familles de courbes $\psi = \text{constante}$ se tracent au juger; elles sont sensiblement orthogonales aux rives du lac et aux limites conventionnelles du bassin étudié. Les résultats pratiques sont fort satisfaisants, comme le montrent les calculs ci-après.

1. A l'aide de la première carte (voir fig. 46). — La portion de lac à étudier a été partagée en 17 compartiments, numérotés du nord au sud. Dans les calculs qui suivent, les compartiments 1 et 2 sont toutefois traités comme n'en formant qu'un seul, ce qui fait que pratiquement il n'y en a que 16.

Les mesures se trouvent reprises dans la table suivante, avec les notations habituelles.

Section	Δv	s	$\Delta\overline{\psi}$
110	$\rm km^2$	km²	km
1,2	5,00	0,183	2,0
3	4,77	0,404	0,9
4	7,95	0,995	1,0
5	9,45	1,786	0,9
6	12,65	2,763	1,0
7	16,06	3,540	1,1
8	15,60	4,365	1,0
9	13,95	4,406	0,9
10	15,30	4,568	1,0
11	14,90	4,316	1,0
12	14,10	3,973	1,0
13	11,97	3,533	0,9
14	12,25	2,720	1,0
15	10,80	1,633	1,0
16	7,06	0,399	0,9
17	5.30	0	1.0

Mesures.

1-16 : Divisions utilisées pour le calcul de la seiche transversale de dix minutes. [6-13 : Divisions utilisées pour le calcul des seiches longitudinales, cf. pp. 91 sqq.] Calcul de la seiche uninodale.

Valeur d'essai : $\lambda_1 = 11,02 \times 10^{-8} \, \mathrm{cm^{-1}}$, c'est-à-dire $T_1 \simeq 604$ sec.

Section	ζ	u	$\overline{\mathbf{\phi}}$	Δζ
	cm	10 ⁶ m ³	m	cm
1.2	100.000	5.0000	27.322	-60-218
3	39,782	6,8976	17.073	-16,933
4	22.849	8,7141	8.758	- 9.651
5	13,198	9,9613	5,577	- 5.531
6	7,667	10,9312	3,956	- 4,360
7	3,307	11,4623	3,238	- 3,925
8	- 0,618	11,3659	2,604	- 2,870
9	- 3,488	10,8793	2,469	-2,449
10	- 5,937	9,9709	2,183	- 2,406
11	- 8,343	8,7279	2,022	- 2,228
12	-10,571	7,2374	1.822	- 2,008
13	-12,579	5,7317	1,622	- 1,609
14	-14,188	3,9937	1,468	- 1,618
15	-15,806	2,2867	1,400	- 1,543
16	-17,349	1,0619	2,661	- 2,639
17	-19,988	0,0025		

Le « résidu » u_{17} étant pratiquement nul, il n'y a pas lieu d'améliorer la valeur propre λ_1 par interpolation; le résultat $T_1 = 604$ sec. sera donc considéré comme « exact ». Il est à remarquer que ce résultat est en accord parfait avec celui trouvé par la méthode de l'équation en w(x), la profondeur employée étant la profondeur « réduite » H(x), et s'écarte, comme ce dernier, de 2,3 % seulement du résultat expérimental.

2. A l'aide de la deuxième carte. — Le nombre de compartiments utilisés est de 16, et ils sont à nouveau numérotés du nord au sud (voir fig. 47).

Voici la table de mesures :

Section n ^o	Δv km²	S km²	$\Delta\overline{\psi}$ km
1	3,15	0,099	1,80
2	4,05	0,262	0,92
3	6,12	0,597	0,91
4	9,46	1,305	1,02
5	11,71	2,123	1,01
6	10,68	2,805	0,88
7	11,37	3,281	0,91

FIG. 47. — Lac de Genève. Région de Morges-Évian, carte bathymétrique II.
1-15 : Divisions utilisées pour le calcul de la seiche transversale de dix minutes.

 $\mathbf{222}$

${f Section} {f n^o}$	Δv	s	$\Delta\overline{\psi}$
	km²	km ²	km
8	10,90	3,399	0,87
9	12,34	3,518	1,00
10	11,08	3,456	0,91
11	11,16	3,272	0,96
12	11,57	2,842	1,10
13	10,15	1,738	1,00
14	7,15	0,864	1,00
15	4,65	0,302	1,00
16	2,20		1,26

Calcul de la seiche uninodale.

Valeur d'essai : $\lambda_1 = 1,0783 \times 10^{-7} \text{ cm}^{-1}$, c'est-à-dire $T_1 = 610,9$ sec.

${f Section} {f n^o}$	ζ	u	$\overline{\phi}$	Δζ cm	
	cm	10 ⁶ m ³	m		
1	100,000	3,1500	31,818	-61,756	
2	38,244	4,6989	17,935	-17,792	
3	20,452	5,9506	9,967	- 9,781	
4	10,671	6,9601	5,333	- 5,866	
5	4,805	7,5228	3,543	- 3,859	
6	0,946	7,6238	2,718	- 2,579	
7.	- 1,633	7,4381	2,267	- 2,225	
8	- 3,858	7,0176	2,065	- 1,937	
9	- 5,795	6,3025	1,791	- 1,931	
10	- 7,726	5,4465	1,576	- 1,546	
11	- 9,272	4,4118	1,348	- 1,395	
12	-10,667	3,1776	1,118	- 1,326	
13	-11,993	1,9603	1,128	- 1,216	
14	-13,209	1,0159	1,176	- 1,268	
15	-14,477	0,3427	1,135	- 1,224	
16	-15,701	-0,0027	. —	—	

Le « résidu » u_{16} étant à nouveau pratiquement nul, la période $T_1 \simeq 611$ sec. sera considérée comme « exacte ». Le résultat s'écarte de 1 % environ (par défaut) de celui fourni par l'observation ($T_1 \simeq 618$ sec.); les périodes trouvées à l'aide de la première carte et par le procédé de l'équation en w(x) présentent, par rapport aux observations, des écarts absolus du même ordre de grandeur. La stabilité de la méthode paraît clairement illustrée (cf. essais de stabilité similaire, pp. 194-201).

FIG. 48. — Lac de Genève. Région de Rolle-Thonon, carte bathymétrique.

1-15 : Divisions utilisées pour le calcul de la seiche transversale de sept minutes. [13-18 : Divisions utilisées pour le calcul des seiches longitudinales, cf. pp. 91 sqq.]

B. Région de Rolle-Thonon. — Le bassin Rolle-Thonon peut être également le siège d'une seiche transversale binodale, d'une période un peu inférieure à sept minutes, ainsi que le montrent les calculs ci-après. La présence d'une seiche d'une telle période dans cette portion du lac était déjà connue de F. A. FOREL, ainsi qu'on l'a fait remarquer page 201, mais la possibilité d'une transversale uninodale, à deux nœuds longitudinaux, de période voisine elle aussi de sept minutes, rend malaisée à débrouiller la question de savoir laquelle de ces deux seiches est celle qui fut observée par FOREL, d'autant plus que le nœud (longitudinal) oriental de la dernière ne se trouve qu'à 4 km environ à l'ouest de Morges.

Faute d'une documentation suffisante sur les observations effectuées sur le lac de Genève (cf. p. 202), nous ne pouvons entreprendre la discussion de ce problème. Il ne nous reste donc qu'à donner les derniers résultats numériques. Tout comme pour le renflement Morges-Évian, on a divisé le bassin de Rolle-Thonon en seize compartiments, numérotés du nord au sud (cf. fig. 48). A titre d'essai de stabilité, les calculs ont été effectués, une première fois en coupant la portion du lac comprise au sud de la ligne Anthy-Yvoire (extrémité sud-ouest du bassin étudié), et une seconde fois en rétablissant cette baie; la différence qui en résulte dans les périodes est de l'ordre de quelques dixièmes de seconde seulement, nouvelle illustration de la grande stabilité du procédé par coordonnées curvilignes.

Dans les tables ci-après, les nombres entre parenthèses, aux divisions 11 à 14, se rapportent aux mesures et calculs où la baie d'Anthy-Yvoire a été rétablie.

Section	Δv	8	$\Delta \overline{\psi}$ km	
nº	km²	km²		
		1		
1	1,95	0,083	0,9	
2	3,96	0,314	0,9	
3	5,40	0,558	0,8	
4	7,00	0,866	0,8	
5	10,30 1,181		1,0	
6	10,00	1,457	0,9	
7	9,40	1,619	0,8	
8	9,00	1,700	0,7	
9	9,80	1,768	0,8	
10	9,40	1,754	0,8	
11	9,15 (9,55)	1,573 (1,607)	0,8	
12	8,00 (9,70)	1,343 (1,418)	0,8	
13	7,40 (10,10)	1,093 (1,156)	0,8	
14	6,50 (7,80)	0,680 (0,698)	0,8	
15	7,00	0,331	0.9	
16	5,10	0	0,6	

Mesures.

Calcul de la seiche binodale.

Valeur d'essai : $\lambda_2 = 2,50 \times 10^{-7} \text{ cm}^{-1}$, c'est-à-dire $T_2 = 401$ sec.

Section	ζ	u	φ	Δζ	
no	cm	10 ⁶ m ³	m	cm	
1	100,000	1,9500	23,494	-52,861	
2	47,139	3,8167	12,155	-27,349	
3	19,790	4,8854	8,755	-17,510	
4	2,280	5,0450	5,826	-11,652	
5	- 9,372	4,0797	3,454	- 8,635	
6	-18,007	2,2790	1,564	- 3,519	
7	-21,526	0,2556	0,158	- 0,316	
8	-21,842	-1,7102	-1,006	1,760	
9	-20,081	-3,6781	-2,080	4,160	
10	-15,921	-5,1747	-2,950	5,900	
11	-10,021	-6,0916 (-6,1317)	-3,873 (-3,816)	7,746 (7,632)	
12	- 2,275 (-2,389)	-6,2736 (-6,3634)	-4,671 (-4,488)	9,342 (8,976)	
13	7,067 (6,587)	-5,7506 (-5,6981)	-5,261 (-4,929)	10,522 (9,858)	
14	17,589 (16,445)	-4,6073 (-4,4154)	-6,775 (-6,326)	13,550 (12,652)	
15	31,139 (29,097)	-2,4275 (-2,3786)	-7,334 (-7,186)	16,501 (16,168)	
16	47,640 (45,265)	0,0021 (-0,0701)			

Étant donné la très faible valeur du résidu u_{16} , la période $T_2 = 401$ sec. sera considérée comme « exacte ».

Si la seiche calculée est réellement celle observée par F. A. FOREL (T = 420 sec. environ), la période peut être considérée comme très satisfaisante (4,5 % d'erreur seulement, par défaut).

§ 5. REMARQUES DIVERSES.

Ainsi qu'on a pu s'en rendre compte, les résultats fournis par la méthode des coordonnées curvilignes sont en général nettement supérieurs à ceux qu'on obtient par intégration de l'équation en w(x); en outre, les calculs sont plus aisés et plus rapides que dans ce dernier procédé : en effet, chaque essai d'une période y nécessite la construction d'une nouvelle table de la fonction Q(x), alors que, dans la méthode des coordonnées curvilignes, la valeur propre d'essai λ s'emploie directement comme facteur (cf. p. 193); la stabilité elle aussi de cette nouvelle méthode est remarquable.

Il a paru inutile de donner, à propos des seiches calculées par la méthode des coordonnées curvilignes, des graphiques représentant les fonctions propres u(v) et les dénivellations ζ ; ils se construisent du reste facilement à l'aide des résultats numériques des pages **219-226**. Quant aux vérifications d'orthogonalité des fonctions u(v), il n'a évidemment pas pu en être question, les calculs étant réduits à une seule seiche dans chacun des deux bassins.

L'emploi du procédé de l'équation en w(x) reste instructif et fournit une vérification intéressante des résultats trouvés par l'autre méthode. Dans le cas d'un lac pour lequel on ne possède aucune observation de seiches, il est indispensable, ne fût-ce que pour repérer les zones où l'on doit s'attendre à rencontrer des seiches transversales. C'est ce qui sera illustré dans le prochain chapitre.

CHAPITRE III.

LES SEICHES TRANSVERSALES DU LAC TANGANIKA.

Les données expérimentales faisant totalement défaut pour les seiches transversales du Tanganika (comme du reste pour ses seiches longitudinales), il y a lieu tout d'abord de rechercher les zones du lac où elles pourraient apparaître.

§ 1. RECHERCHE THÉORIQUE DES ZONES OÙ LES SEICHES TRANSVERSALES PEUVENT APPARAÎTRE.

Le procédé employé ici est le même que celui utilisé pour le lac de Genève (cf. pp. 202 sqq.); le calcul de la profondeur réduite H(x) (définition, cf. p. 182) nécessitant de très longs calculs préliminaires et n'améliorant que de quelques pour cent les résultats finaux, on a cru bon de se contenter ici d'employer la profondeur moyenne $\overline{h}(x)$ [= S(x)/b(x)]; les résultats obtenus par la méthode de l'équation en w(x) seront du reste vérifiés à l'aide de la méthode des coordonnées curvilignes, qui, comme on l'a vu au chapitre précédent, semble fournir habituellement des périodes d'oscillation plus proches des périodes observées.

Voici donc une table des données numériques utilisées dans ce chapitre, du moins pour la solution de l'équation en w(x). Les sections transversales sont les mêmes que celles employées pour le calcul des seiches longitudinales; rappelons qu'elles sont numérotées du nord au sud. Comme pour le lac de Genève, les régions « rognées » pour le calcul des seiches longitudinales ont été rétablies pour l'étude des seiches transversales.

Section n ^o	Δx km	x km	S(x) km ²	b(x) km	<i>h</i> (<i>x</i>)	$b^2(x)$ km ²	$\frac{\pi^2 h/b^2}{10^{-7} \text{ cm}^{-1}}$
1 2 3 4 5	5,5 5 5 5 5 5	5,5 10,5 15,5 20,5 25,5	2,35 3,24 3,31 3,42 3,68	24 25 23 23 23 21,5	98 130 144 149 171	576 625 529 529 462	0,1679 0,2053 0,2687 0,2780 0,3653

Lac Tanganika. Données numériques.