L'emploi du procédé de l'équation en w(x) reste instructif et fournit une vérification intéressante des résultats trouvés par l'autre méthode. Dans le cas d'un lac pour lequel on ne possède aucune observation de seiches, il est indispensable, ne fût-ce que pour repérer les zones où l'on doit s'attendre à rencontrer des seiches transversales. C'est ce qui sera illustré dans le prochain chapitre.

CHAPITRE III.

LES SEICHES TRANSVERSALES DU LAC TANGANIKA.

Les données expérimentales faisant totalement défaut pour les seiches transversales du Tanganika (comme du reste pour ses seiches longitudinales), il y a lieu tout d'abord de rechercher les zones du lac où elles pourraient apparaître.

§ 1. RECHERCHE THÉORIQUE DES ZONES OÙ LES SEICHES TRANSVERSALES PEUVENT APPARAÎTRE.

Le procédé employé ici est le même que celui utilisé pour le lac de Genève (cf. pp. 202 sqq.); le calcul de la profondeur réduite H(x) (définition, cf. p. 182) nécessitant de très longs calculs préliminaires et n'améliorant que de quelques pour cent les résultats finaux, on a cru bon de se contenter ici d'employer la profondeur moyenne $\overline{h}(x)$ [= S(x)/b(x)]; les résultats obtenus par la méthode de l'équation en w(x) seront du reste vérifiés à l'aide de la méthode des coordonnées curvilignes, qui, comme on l'a vu au chapitre précédent, semble fournir habituellement des périodes d'oscillation plus proches des périodes observées.

Voici donc une table des données numériques utilisées dans ce chapitre, du moins pour la solution de l'équation en w(x). Les sections transversales sont les mêmes que celles employées pour le calcul des seiches longitudinales; rappelons qu'elles sont numérotées du nord au sud. Comme pour le lac de Genève, les régions « rognées » pour le calcul des seiches longitudinales ont été rétablies pour l'étude des seiches transversales.

Section n ^o	Δx km	x km	S(x) km ²	b(x) km	<i>h</i> (<i>x</i>)	$b^2(x)$ km ²	$\frac{\pi^2 h/b^2}{10^{-7} \text{ cm}^{-1}}$
1 2 3 4 5	5,5 5 5 5 5 5	5,5 10,5 15,5 20,5 25,5	2,35 3,24 3,31 3,42 3,68	24 25 23 23 23 21,5	98 130 144 149 171	576 625 529 529 462	0,1679 0,2053 0,2687 0,2780 0,3653

Lac Tanganika. Données numériques.

Section	Δx	x	S(x)	b(x)	$\overline{h}(x)$	$b^{2}(x)$	$\pi^2 \overline{h}/b^2$
nº			1 0			1 9	
	km	km	km ²	km	m	km²	$10^{-7} \mathrm{cm^{-1}}$
6	5	30.5	4.25	21	202	441	0,4520
7	5	35,5	4,95	24	206	576	0,3520
8	5	40,5	5,45	26	210	676	0,3066
9	5	45,5	5,21	28,5	183	812	0,2225
10	5	50,5	5,68	27,5	207	756	0,2702
	10	20 F	~ 00	04.5	000	000	0.0000
11	10	60,5	7,23	31,5	230	992	0,2289
12	11		8,17	30,0	224	1.332	0,1000
13	4	76,5	4,82	22	219	484	0,4400
14	8	84,0	5,00	21	210	129	0,2845
15	9,5	94	8,84	51,5	201	552	0,2790
16	9,5	103,5	13,25	35	379	1.225	0,3054
17	9	112,5	21,01	39	539	1.521	0,3498
18	9,5	122	23,73	50	475	2.500	0,1875
19	10	132	43,13	49	880	2.401	0,3617
20	10	142	54,51	57,5	948	3.306	0,2831
21	13	155	61.67	55	1.121	3.025	0.3658
22	10	165	64.9	55	1.180	3.025	0,3850
23	11.5	176.5	65,1	55,5	1.173	3.080	0,3758
24	11.5	188	60,3	51	1.182	2.601	0,4485
25	12,5	200,5	62,9	61	1.031	3.721	0,2735
					0.05	F 110	0.1010
26	11,5	212	59,7	71,5	835	5.112	0,1612
27	10	222	53,4	68	785	4.624	0,1676
28	9,5	231,5	38,5	60	283	4.330	0,1321
29	10	241,5	30,2	63 F0 F	479	3.909	0,1191
30	9,5	251	37,2	58,5	030	3.422	0,1855
31	10	261	31,6	53	596	2.809	0,2094
32	4	265	30,8	52	592	2.704	0,2160
33	4,5	269,5	28,9	58	498	3.364	0,1461
34	4,5	274	33,9	61	556	3.721	0,1475
35	4	278	34,0	65	523	4.225	0,1222
36	75	285.5	31.1	66.5	468	4.422	0,1044
37	75	203,0	26.6	69.5	383	4 830	0.0783
38	5	298	24.1	76.5	315	5.852	0.0531
39	5	303	20.1	77	261	5,929	0.0434
40	1,5	304,5	18,3	73	251	5.329	0,0465
				~.	0.25	F 180	0.0207
41	3,5	308	24,8	74	335	5.476	0,0604
	5	313	22,5	75	300	5.625	0,0526
	5	318	22,7		445	2.001	0,1689
44	5	323	22,9		509	2.025	0,2481
45	5,5	328,5	z1,z	43,5	487	1.892	0,2940
46	5	333,5	20,5	42	488	1.764	0,2730
47	5	338,5	20,4	39	523	1.521	0,3394
48	7	345,5	20,9	41	510	1.681	0,2994
49	7	352,5	27,1	48	565	2.304	0,2420
50	10	362,5	29,4	54	544	2.916	0,1842
51	9.5	372	31.0	51	608	2.601	0,2209
52	5	377	33.1	75	441	5.625	0,0774
			,*				

Section	Δx	x	$\mathbf{S}(x)$	b(x)	$\overline{h}(x)$	$b^2(x)$	$\pi^2 \overline{h} / b^2$
11	km	km	$\rm km^2$	\mathbf{km}	m	$\rm km^2$	10 ⁻⁷ cm ⁻¹
53	5	382	34,6	77	449	5.929	0,0747
54	5	387	34,9	79	442	6.241	0,0699
55	5,5	392,5	36,1	79	457	6.241	0,0722
56	5	397,5	34,8	75	464	5.625	0,0814
57	5,5	403	35,0	74	473	5.476	0,0853
58	5	408	33,5	74	453	5.476	0,0816
59	9,5	417,5	30,8	75	411	5.625	0,0721
60	9,5	427	33,3	74	450	5.476	0,0811
			22.0	00 F	100	1 600	0.0007
61	9,5	436,5	28,9	68,5	422	4.692	0,0887
62	9	445,5	33,3	63	529	3.909	0,1510
63	10	455,5	43,0	61 50	715	5.121	0,1897
64 65	10	403,3	48,1	59 47	4 004	5.401 9.900	0,2310
00	10	475,5	51,4	47	1.034	2.205	0,4001
66	10	485 5	53.5	45	1.189	2.025	0,5795
67	10	495.5	51.2	51	1.004	2,601	0,3810
68	10	505.5	55.6	54	1.030	2.916	0,3486
69	10	515.5	58.0	51,5	1.126	2.652	0,4191
70	• 9,5	525	57,6	50	1.152	2.500	0,4548
-							
71	10	535	49,4	53,5	923	2.862	0,3183
72	9,5	544,5	42,0	50	840	2.500	0,3316
73	10	554,5	40,0	51	784	2.601	0,2975
74	10	564,5	30,4	43,5	699	1.892	0,3647
75	10	574,5	24,6	41,5	593	1.722	0,3399
20	10	FOLF	20.0	10 5	500	4 009	0.9760
76	10	584,5	23,0	43,5	529	1.892	0,2700
77	10	594,5	23,6	44,5	000 544	1.900	0,2042
70	5 E	099,0 601 F	24,8	48,0 50 5	206	2.002	0,2140
19	Э. 55	640	22,0	58,5 60 5	300	4 830	0,0758
00	0,0	010	23,0	09,5	571	4.000	0,0700
81	5	615	20.4	67	304	4,489	0.0668
82	5	620	17.5	50	350	2,500	0,1382
83	5	625	14.7	48.5	303	2.352	0,1271
84	5	630	13.2	46	287	2.116	0,1338
85	5	635	8,90	40.5	· 220	1.640	0,1324
				,			
86	5	640	8,24	39,5	209	1.560	0,1323
87	10	650	5,60	35	160	1.225	0,1289
88	10	660	2,97	32,5	91	1.050	0,0851
` 89	10,5	670,5	1,50	19	79	361	0,2159
90	11	681,5	0	0	0	0	<u> </u>

Le graphique ci-dessous montre que la fonction $\pi^2 \bar{h}(x)/b^2(x)$ présente des minima nettement accusés à Rumonge, Nyanza, Albertville, Moba, ainsi qu'au sud de Kala.

L'extrémité nord (région située au nord de Rumonge) présentant une forme très régulière (largeur à peu près constante, fond assimilable à un plan incliné auquel succède un plan horizontal), on se réservera de la traiter à part, suivant

.

229

une théorie qui sera exposée dans le prochain chapitre (« shelf-seiches » et « edge-waves » de STOKES). Les quatre autres « bassins », désignés conventionnellement du nom des quatre noms de villes ci-dessus, seront traités dans ce chapitre III successivement par la méthode de l'équation en w(x) et par celle des coordonnées curvilignes.

FIG. 49. — Lac Tanganika. Recherche des zones à seiches transversales. En ordonnée, au lieu de \overline{h}/b^2 en 10⁻⁸ cm⁻¹, lire $\pi^2 \overline{h}/b^2$ en 10⁻⁷ cm⁻¹.

Avant de passer aux calculs numériques, donnons à nouveau une table permettant de se rendre compte comment les conditions de lente variation de b(x) et b'(x) sont réalisées tout le long du lac (cf. pp. 177, 204). Voici cette

Section n ^o	Δb	$\Delta b / \Delta x$	Δ^{2b}	$\Delta^{2}b/\Delta x^{2}$	π^2/b
0 1 2 3 4 5 6 7	$\begin{bmatrix} 24 \\ 1,0 \\ -2,0 \\ 0 \\ -1,5 \\ -0,5 \\ 3,0 \\ 2,0 \end{bmatrix}$	[4,363] 0,200 -0,400 0 -0,300 -0,100 0,600 0,400	$ \begin{array}{c c} -23,0 \\ -3,0 \\ 2,0 \\ -1,5 \\ 1,0 \\ 3,5 \\ -1,0 \\ \end{array} $	$ \begin{array}{c} -0,760 \\ -0,120 \\ 0,080 \\ -0,060 \\ 0,040 \\ 0,140 \\ -0,040 \end{array} $	0,4112 0,3948 0,4291 0,4291 0,4591 0,4591 0,4700 0,4112

Table auxiliaire.

Section					
nº	Δb	$\Delta b / \Delta x$	$\Delta^2 b$	$\Delta^{2}b/\Delta x^{2}$	π^2/b
	km	nombre pur	km	km ⁻¹	km ⁻¹
8	0.5	0 500	0,5	0,020	0,3796
9	2,5	0,500	- 3,5	-0,140	0,3463
10	- 1,0	-0,200	5,0	0,200	0,3589
11	4,0	0,400	1,0	0,010	0,3133
12	5,0	0,455	-19,5	-0,161	0,2704
13	-14,5	-2,900	19,5	0,780	0,4486
14	5,0	0,625	- 0,5	-0,0078	0,3655
15	4,5	0,474	- 1,0	-0,0111	0,3133
16	3,5	0,368	0,5	0,0055	0,2820
17	4,0	0,444	7,0	0,0864	0,2531
18	11,0	1,158	-12,0	-0,133	0,1974
19	- 1,0	-0,100	9,5	0,095	0,2014
20	8,5	0,850	-11,0	-0,110	0,1716
21	- 2,5	-0,192	2,5	0.0148	0,1794
22	0	0	0.5	0,0050	0,1794
23	0,5	0,0435	- 5.0	-0.0378	0.1778
24	- 4,5	-0,391	14.5	0,1096	0,1935
25	10,0	0,800	0.5	0.0032	0.1618
26	10,5	0,913	-14.0	-0,1059	0.1380
~° 97	- 3,5	-0,350	1.5	0.0150	0.1451
28	- 2,0	-0,211	- 1.0	-0.01108	0 1495
20	- 3,0	-0,300	- 1 5	-0.0150	0,1400
20	- 4,5	-0,474	- 1,5	-0,0130	0,1507
30 24	- 5,5	-0,550	- 1,0	-0,0111	0,1869
20	- 1,0	-0,250	4,5	0,043	0,1802
02 22	6,0	1,333	2,0	0,1181	0,1098
00 97	3,0	0,667	- 3,0	-0,1481	0,1619
34 25	4,0	1,000	1,0	0,0494	0,1018
55	1,5	0,200	- 2,5	-0,1362	0,1318
30 97	3,0	0,400	1,5	0,0267	0,1484
37	7,0	1,400	4,0	0,0711	0,1420
38	0,5	0,100	- 6,5	-0,260	0,1290
39	- 4,0	-2,667	- 4,5	-0,180	0,1282
40	1,0	0,286	5,0	2,222	0,1352
41	1,0	0,200	0	0	0,1334
42	-24,0	-4,800	-25,0	-1,000	0,1316

231

Nection n ^o	Δb	$\Delta b / \Delta x$	$\Delta^2 b$	$\Delta^{2}b$ / Δx^{2}	π^2/b
	km	nombre pur	km	km ⁻¹	km ⁻¹
43			18,0	0,720	0,1935
44	- 6,0	-1,200	4,5	0,180	0,2193
45	- 1,5	-0,273	0	0	0,2269
46	- 1,5	-0,300	- 1,5	-0,060	0,2350
47	- 3,0	-0,600	5,0	0,200	0,2532
48	2,0	0,286	5,0	0,102	0,2407
49	7,0	1,000	- 1,0	-0,0204	0,2056
50	6,0	0,600	- 9,0	-0,090	0,1828
51	- 3,0	-0,316	27,0	0,2992	0,1935
52	24,0	4,800	-22,0	-0,880	0,1316
53	2,0	0,400	0	0	0.1282
54	2,0	0,400	- 2.0	-0.0800	0.1249
55	0	0	- 4.0	-0,1322	0.1249
56	- 4,0	-0,800	3.0	0.1200	0 1316
57	- 1,0	-0,182	1.0	0.0331	0 1334
58	0	0	1,0	0.0400	0 1334
50	1,0	0,105	- 2.0	-0 0222	0,1316
59	- 1,0	-0,105	- 2,0	-0.0443	0,1310
64	- 5,5	-0,579	- 4,0	0,0445	0,1334
69	- 5,5	-0,611	25	0 0439	0,1441
62	- 2,0	-0,200	3,5	0,0432	0,1507
63	- 2,0	-0,200	0	0	0,1618
64	-12,0	-1,200	-10,0	-0,100	0,1073
65	- 2,0	-0,200	10,0	0,100	0,2100
66	6,0	0,600	8,0	0,080	0,2193
67	3,0	0,300	- 3,0	-0,030	0,1935
68	- 2,5	-0,250	- 5,5	-0,055	0,1828
69	- 1,5	-0,158	1,0	0,010	0,1916
70	3,5	0,350	5,0	0,0554	0,1974
71	- 3,5	-0,368	- 7,0	-0,070	0,1845
72	1.0	0,100	4,5	0,0499	0,1974
73	- 7.5	-0.750	- 8,5	-0,0850	0,1935
74	- 2.0	-0,200	5,5	0,0550	0,2269
75	2.0	0,200	4,0	0,0400	0,2378
76	1.0	0,100	- 1,0	-0,0100	0,2269
77	4.0	0,800	3,0	0,0300	0,2218
	2,0	0,000			

	····				
Section n ^o	Δb	$\Delta b/\Delta x$	$\Delta^2 b$	$\Delta^2 b / \Delta x^2$	π^2/b
	km	nombre pur	\mathbf{km}	km ⁻¹	km ⁻¹
78	10.0	2.000	6,0	0,2400	0,2035
79		,	1,0	0,0400	0,1687
80	11,0	2,000	-13,5	-0,4463	0,1420
81	-17.0	-3,400	-14,5	-0,5800	0,1473
82	11,0	5,100	15,5	0,6200	0,1974
83	- 1,5	-0,300	- 1,0	0,0400	0,2035
84	- 2,5		- 3,0	-0,1200	0,2146
85	- 1 0	-0.200	4,5	0,1800	0,2437
86	- 4 5	-0 450	- 3,5	-0,1400	0,2499
87	- 9 5	0,150	2,0	0,0200	0,2820
88	- 2,5	1.8%	-11,0	-0,110	0,3037
89	-13,5	-1,200	- 5,5	-0,0499	0,5194
90	-19	-1,727			

On voit que les conditions $b' \ll \pi$ et $b'' \ll \pi^2/b$ sont médiocrement réalisées, surtout dans les régions où l'allure de la courbe $\pi^2 \bar{h}/b^2$ fait prévoir l'apparition de seiches transversales : minima accusés aux sections 1-3, 11-14 (Rumonge); 17-19 (Nyanza); 25-29 (mieux !); 31-45 (Albertville); 50-62 (Moba; assez bien); 75-90 (Kala). Les données sont alors imprimées en italique.

Ceci ne rend pas pour autant les résultats numériques qui vont suivre dépourvus de valeur. On a vu, dans le cas du lac de Genève, que les résultats théoriques sont en accord très acceptable avec l'expérience; il ne faut en outre pas perdre de vue que les présents calculs n'ont d'autre but que de guider les observations et de faciliter éventuellement l'interprétation des enregistrements limnographiques.

§ 2. CALCUL DES SEICHES PAR LA MÉTHODE DE L'ÉQUATION EN w(x).

L'emploi de cette méthode nécessite Δx constant, du moins si l'on veut faire usage du très commode schéma d'intégration numérique déjà employé avec succès pour le lac de Genève (cf. pp. 205 sqq.).

C'est pourquoi on introduira de nouvelles divisions, distinctes en principe de celles déjà employées pour le calcul des seiches longitudinales. Afin d'éviter toute confusion, ces nouvelles divisions seront numérotées en chiffres romains, toujours du nord au sud. On les trouvera sur la planche IV.

La conduite du calcul numérique appelle quelques remarques préliminaires.

La condition d'évanescence exponentielle de l'amplitude w(x) ne peut être réalisée dans la pratique que moyennant un ajustement, aussi bien des valeurs (arbitraires) initiales de w(x) que de la valeur propre $\lambda \equiv \omega^2/g$. On ne peut donc plus procéder ici comme dans les cas admettant des solutions exactes, où l'on imposait à w(x) la valeur zéro à l'une des extrémités fermées du lac, et une valeur arbitraire (par exemple l'unité) au point suivant.

Ce procédé est encore applicable lorsque le point initial coïncide avec une extrémité fermée de la masse d'eau et que la largeur du lac est très faible en ce point, ce qui entraîne l'annulation de l'amplitude w(x), comme c'est par exemple le cas pour le lac de Genève, aux extrémités plus ou moins effilées.

Mais, en général, imposer à w(x) d'être nul en un point situé « à quelque distance » d'une région où la théorie prévoit l'apparition de seiches transversales et lui imposer une valeur non nulle en un point voisin, revient à postuler arbitrairement au premier point l'existence d'un nœud longitudinal d'oscillation transversale, ce qui contredirait la condition-frontière exigée.

Pratiquement, on procédera comme suit. On choisit arbitrairement deux points α et β situés dans la zone où l'on s'attend à voir décroître exponentiellement l'amplitude w(x), et le plus loin possible du maximum présumé d'amplitude. On attribue à w(x) en ces points deux valeurs arbitraires $w(\alpha)$ et $w(\beta)$, non nulles et de même signe. On choisit pour λ une valeur de départ convenable, par exemple la valeur propre correspondant au mouvement longitudinal équinodal de l'eau dans un bassin de profondeur constante égale à la profondeur moyenne de la région où l'amplitude w(x) est théoriquement maximum, et de longueur égale à la largeur du lac en cette région. A partir des valeurs $w(\alpha)$ et $w(\beta)$, on calcule w(x) point par point, dans le sens de la décroissance exponentielle de w(x) et l'on ajuste les deux valeurs $w(\alpha)$ et $w(\beta)$ jusqu'à ce que w(x)prenne une allure exponentielle amortie satisfaisante. Au cours de ces premiers essais, λ est laissé fixe.

Une fois atteint le résultat désiré, on poursuit le calcul de w(x) en sens opposé, à partir des deux points α et β , et l'on juge du comportement de w(x)dans la région d'amplitude théoriquement maximum et dans la région de décroissance exponentielle située « au-delà » de cette dernière. On ajuste maintenant λ jusqu'à ce que la fonction w(x) présente l'allure voulue. Les légères modifications de λ , qui altèrent profondément l'allure de la fonction au voisinage et au-delà du maximum, n'auront en général qu'une influence pratiquement négligeable sur l'allure de la « queue » exponentielle calculée préalablement. On peut montrer en effet que les variations de w(x) dues à une légère modification de λ s'accumulent rapidement à mesure que le nombre de points considérés augmente, et croissent avec w(x) lui-même; il en résulte une divergence de plus en plus marquée des solutions à mesure que l'on s'éloigne des points α et β dans le sens des w(x) croissants (d'où précisément la sensibilité extrême de la méthode), alors que l'effet est excessivement faible en sens inverse [w(x) petit et nombre de points peu élevé].

Sections transversales utilisées pour le calcul des seiches transversales

Considérons l'équation

$$w^{\prime\prime} + \left[\frac{\omega^2}{g\mathrm{H}(x)} - \frac{r^2 \pi^2}{b^2(x)}\right] w = 0,$$

que nous écrirons, comme précédemment (cf. p. 183),

$$w'' - Q(x, \lambda) \cdot w = 0 \tag{1}$$

(où l'on a posé $\lambda = \omega^2/g$). Si l'on modifie légèrement λ , en le remplaçant par $\lambda + \Delta \lambda$, l'équation devient :

$$w^{\prime\prime} - \mathbf{Q} (\lambda + \Delta \lambda, x) \cdot w = 0,$$

ou encore

$$w'' - [Q(x, \lambda) + \frac{\partial Q}{\partial \lambda} \Delta \lambda] \cdot w = 0,$$

en remarquant bien que $\frac{\partial Q}{\partial \lambda}$ est fonction de $x: \frac{\partial Q}{\partial \lambda} = -\frac{1}{H(x)}$, ou enfin

$$w'' - (\mathbf{Q} + \delta \mathbf{Q}) \cdot w = 0. \tag{2}$$

Si l'on remplace, comme précédemment, w'' par l'expression aux différences finies : $(w_{n+1}-2w_n+w_{n-1})\Delta x^2$, on peut écrire :

$$w_{n+1} = 2w_n - w_{n-1} + \Delta x^2 \cdot w_n \cdot Q_n. \tag{1'}$$

Désignons par z les valeurs de w calculées à partir de (2); on a de même :

$$z_{n+1} = 2z_n - z_{n-1} + \Delta x^2 \cdot z_n \left(Q_n + \delta Q_n \right). \tag{2'}$$

Si l'on désigne par les indices p-1 et p les valeurs arbitraires initiales retenues finalement pour w aux points d'abscisse α et β , on peut écrire :

$$w_{p+1} = 2w_p - w_{p-1} + \Delta x^2 w_p Q_p; \tag{1''}$$

$$z_{p+1} = 2w_p - w_{p-1} + \Delta x^2 w_p \left(\mathbf{Q}_p + \delta \mathbf{Q}_p \right). \tag{2''}$$

L'écart $z_{p+1} - w_{p+1}$ est donc de

 $\Delta x^2 w_p \, \delta \mathbf{Q}_p.$

Au point x_{p+2} on a :

$$w_{p+2} = 2w_{p+1} - w_p + \Delta x^2 w_{p+1} Q_{p+1};$$

 $z_{p+2} = 2z_{p+1} - w_p + \Delta x^2 z_{p+1} (Q_{p+1} + \delta Q_{p+1});$

(puisque $z_p = w_p$), ou, en utilisant (1'') et (2'') :

 $w_{p+2} = 2(2w_p - w_{p-1} + \Delta x^2 w_p Q_p) - w_p + \Delta x^2 (2w_p - w_{p-1} + \Delta x^2 w_p Q_p) Q_{p+1};$ $z_{p+2} = 2[2w_p - w_{p-1} + \Delta x^2 w_p (Q_p + \delta Q_p)] - w_p + \Delta x^2 [2w_p - w_{p-1} + \Delta x^2 w_p (Q_p + \delta Q_p)] (Q_{p+1} + \delta Q_{p+1}).$

Par suite (en négligeant le terme en $\delta Q_p \, \delta Q_{p+1}$) :

$$z_{p+2} - w_{p+2} = 2 \Delta x^2 w_p \, \delta Q_p + \Delta x^2 \left[2w_p \, \delta Q_{p+1} - w_{p-1} \, \delta Q_{p+1} + \Delta x^2 \, w_p \left(Q_p \, \delta Q_{p+1} + Q_{p+1} \, \delta Q_p \right) \right],$$

ou, en confondant ∂Q_p et ∂Q_{p+1} [H(x) étant supposé peu variable d'un point à l'autre] et en appliquant la relation aux différences (1'') :

$$z_{p+2} - w_{p+2} = \Delta x^2 (2w_{p+1} + w_{p-1}) \, \delta \mathbf{Q}_p.$$

235

Des calculs analogues conduisent aux relations suivantes, où l'on a négligé les indices des δQ (supposés approximativement égaux entre eux) :

 $egin{aligned} & z_{p+3} - w_{p+3} = \Delta x^2 \left(3w_{p+2} + 2w_p + w_{p-2}
ight) \, \delta \mathbf{Q}, \ & z_{p+4} - w_{p+4} = \Delta x^2 \left(4w_{p+3} + 3w_{p+4} + 2w_{p-4} + w_{p-3}
ight) \, \delta \mathbf{Q}, ext{ etc.} \end{aligned}$

Ces relations ne sont qu'approchées mais suffisent à montrer le comportement de l'écart entre les deux solutions z(x) et w(x); on voit que cet écart croît rapidement avec l'amplitude elle-même, ce qui entraîne une divergence marquée entre les différentes solutions correspondant aux diverses valeurs d'essai de λ .

La comparaison des courbes w(x) que l'on obtient au moyen des différentes valeurs d'essai de λ illustre bien ces conclusions théoriques.

A. Bassin de Nyanza. — On a utilisé 42 divisions, de 5 en 5 km $(\Delta x = 5 \text{ km})$; cf. planche IV.

Section	\boldsymbol{x}	$\overline{h} \equiv S/b$	b(x)	π^2/b^2
nº		1		/
	km	m	km	$10^{-12} \mathrm{cm}^{-2}$
I	2	49	24	1,71347
II	7	108	24,5	1,64425
III	12	134	24,5	1,64425
IV	17	145	23	1,86571
V	22	156	22,5	1,94955
VI	27	181	21.5	2,13512
VII	32	203	22	2,03917
VIII	37	207	24.5	1,64425
IX	42	198	27	1.35386
x	47	191	28	1,25888
11		101	~~~	1,20000
XI	52	210	28	1,25888
XII	57	222	30	1.09662
XIII	62	229	32	0,96383
XIV	67	227	38.5	0,66585
XV	72	224	36.5	0.74082
			,-	.,
XVI	77	219	22	2.03917
XVII	82	213	25	1.57914
XVIII	87	228	28.5	1.21547
XIX	92	267	30.5	1.06125
XX	97	314	32.5	0.93462
XXI	102	363	34.5	0,82938
XXII	107	459	37	0,72094
XXIII	112	539	39	0,64889
XXIV	117	507	44,5	0,49846
XXV	122	475	50	0,39478
XXVI	127	677	49,5	0,40284
XXVII	132	880	49	0,41106
XXVIII	137	914	53,5	0,34485
XXIX	142	948	57,5	0,29854
XXX	147	1.015	56,5	0,30920

1. Mesures.

Section n ^o	x km	$\overline{h} \equiv S/b$ m	b(x) km	π^2/b^2 10^{-12} cm^{-2}
XXXI	152	1.081	54,5	0,33231
XXXIII	162	1.169	55	0.32627
XXXIV	167	1.179	55	0,32627
XXXV	172	1.176	55,5	0,32044
XXXVI	177	1.173	55,5	0,32044
XXXVII	182	1.177	53,5	0,34485
XXXVIII	187	1.181	51	0,37945
XXXIX	192	1.144	54	0,33846
\mathbf{XL}	197	1.068	58	0,29339
XLI	202	1.006	62,5	0,25268
XLII	207	921	66,5	0,22319

2. Résultats numériques.

a) Seiche uninodale transversale, sans nœud longitudinal. Recherche des valeurs $w(\alpha)$ et $w(\beta)$ et étude de la « queue » exponentielle amortie. Trois couples de valeurs d'essai arbitraires (cf. p. 234), en italique.

Prenons comme points initiaux les points portant les numéros XXXIV et XXXV, situés dans une région où w(x) présente certainement l'allure demandée.

Section	$\omega^2/g\overline{h}$	Q(x) 10^{-12} cm^{-2}	w(x)			
n ^o	10^{-12} cm ⁻²		10^n cm (104)			
XXXIV XXXV	0,21737	0,10307	2,00000 1,60000	2,00000 1,70000	2,00000 1,65000	
XXXVI	0,21792	0,10252	1,24123	1,44380	1,34252	
XXXVII	0,21718	0,12767	0,91427	1,22460	1,06945	
XXXVIII	0,21644	0,16301	0,61649	1,04449	0,83051	
XXXIX	0,22404	0,11442	0,34383	0,90695	0,61808	
XL	0,23934	0,05405	0,08101	0,79535	0,42333	
XLI	0,25410	-0,00142	(négatif)	0,69450	0,23430	
XLII	0,27755	-0,05436	—	0,59340	0,04519	

Va	leur	propre	d	'essai :	ω^2	= 0),25	50	х	1()-4	sec^{-}	2.
----	------	--------	---	----------	------------	-----	------	-----------	---	----	-----	-----------	----

Afin de nous rendre compte de l'influence d'une modification de la valeur propre sur le comportement de la fonction w(x), recommençons les calculs

(104) Pour cette notation, cf. p. 206.

ci-dessus avec $\omega^2 = 0,300 \times 10^{-4} \text{ sec}^{-2}$ et les valeurs initiales $w_{XXXIV} = 2,00000$ $w_{XXXV} = 1,70000$. On verra que cette influence est peu importante, à cause du petit nombre de points et de la décroissance de w(x), comme le prévoit la théorie exposée pp. 235-236.

Section n ^o	$\omega^2/g\overline{h}$ $10^{-12} \mathrm{cm}^{-2}$	Q(x) 10^{-12} cm^{-2}	w(x) 10^n cm
XXXIV	0,26018	0,06609	2,00000
XXXV	0,26084	0,05960	1,70000
XXXVI	0,26151	0,05893	1,42533
XXXVII	0,26062	0,08423	1,17166
XXXVIII	0,25973	0,11972	0,94266
XXXIX	0,26884	0,06962	0,74187
XL	0,28721	0,00618	0,55399
XLI	0,30492	-0,05224	0,36697
XLII	0,33306	-0,10987	0,17516

Les courbes ci-dessous permettent la comparaison de ces divers résultats. Des essais ultérieurs, effectués avec diverses valeurs propres, mènent à retenir comme satisfaisante la valeur $\omega^2 = 0.2682 \times 10^{-4} \sec^{-2}$ ($\lambda = 0.2742 \times 10^{-7} \text{ cm}^{-1}$), d'où T $\simeq 1213 \sec = 20 \text{ min. } 13 \sec$.

N. B. — Dans les six figures qui suivent (50 à 55), l'axe des x a été gradué en n^{os} de sections et non en km, ceci afin de faciliter le repérage des zones à seiches sur la planche IV.

FIG. 50. — Lac Tanganika. Bassin de Nyanza.

Étude de la décroissance exponentielle de l'amplitude w(x) de la seiche transversale uninodale (sans nœud longitudinal), en fonction des valeurs initiales de w(x) et de la valeur propre ω^2 .

Voici les résultats de ce dernier essai.

Section	$\omega^2/a\overline{h}$	$\Omega(r)$	$\eta \eta(x)$
n ⁰	∞ gn	20(m)	w(w)
-	10^{-12} cm^{-2}	10^{-12} cm^{-2}	10 ⁿ cm
T	5 50650	9 00949	0.07409
	5,59659	-3,00312	-0,07192
	2,53919	-0,89494	1,45055
	2,04652	-0,40227	2,64809
IV	1,89127	-0,02556	3,57954
V	1,75791	0,19164	4,48802
VI	1,51510	0,62002	5,61152
VII	1,35090	0.68827	7,60483
VIII	1,32480	0,31945	10,90669
IX	1,38502	-0.03116	15,07958
X	1,43578	-0.17690	19,13500
А	1,10010	0,11000	10,10000
XI	1,30587	-0,04699	22,34417
XII	1,23528	-0,13866	25,29085
XIII	1,19752	-0,23369	27,36082
XIV	1,20808	-0.54223	27,83230
XV	1,22426	-0.48344	24,53090
11 (•,•••	
XVI	1,25220	0,78697	18,26470
XVII	1,28748	0,29166	15,59195
XVIII	1,20278	0,01269	14,05609
XIX	1,01058	0.05067	12,56482
XX	0,87335	0,06127	11,23271
	- ,	.,	,
XXI	0,75546	0,07392	10,07266
XXII	0,59746	0,12348	9,09875
XXIII	0,50878	0,14011	8,40572
XXIV	0,54089	-0,04243	8,00712
XXV	0,57733	-0,18255	7,52358
	-		
XXVI	0,40507	-0,00223	6,69668
XXVII	0,31163	0,09943	5,86605
XXVIII	0,30004	0,04481	5,18124
XXIX	0,28928	0,00924	4,55447
XXX	0,27018	0,03902	3,93822
VVVI	0.95969	0.07969	3 36030
AAAI XXXXII	0,23308	0,07803	3,30039
AAAII	0,24204	0,08423	2,84802 9,2009/
XXXIII	0,23459	0,09168	2,39684
XXXIV	0,23260	0,09367	2,00000
XXXV	0,23319	0,08725	1,65000
XXXVI	0,23379	0,08665	1,33599
XXXVIII	0,23299	0,11186	1,05092
XXXVIII	0,23220	0,14725	0,79524
XXXIX	0,24035	0,09811	0,56883
XL	0.25677	0,03662	0,35637
	-,	-,	-,
XLI	0,27260	-0,01992	0,14717
XLII	0,29775	-0,07456	
	-		

La graphique ci-dessous montre l'allure de la fonction w(x) pour quelquesunes des valeurs d'essai de ω^2 :

Courbe	II :	$\omega^2 = 0,\!280 imes 10^{-4} { m sec^{-2}}$	$(T \simeq 1.1)$	87	sec);
Courbe	III :	$\omega^2 = 0.260 imes 10^{-4} { m sec^{-2}}$	$(T \simeq 1.2)$	232	sec);
Courbe	IV :	$\omega^2 = 0.2686 imes 10^{-4} \ { m sec^{-2}}$	$(T \simeq 1.2)$	212	sec);
Courbe	V :	$\omega^2 = 0.2682 imes 10^{-4} \ { m sec^{-2}}$	$(T \simeq 1.2)$	213	sec);

La dernière de ces quatre valeurs de ω^2 , qui annule w(x) à l'extrémité nord du lac, a été adoptée comme « exacte ».

L'extrême sensibilité de la méthode est bien mise en relief : quelques % d'écart entre les valeurs d'essai de ω^2 suffisent à modifier complètement l'allure des fonctions w(x); aussi l'amélioration que l'on pouvait éspérer d'un nouvel essai paraît-elle illusoire.

FIG. 51. — Lac Tanganika. Bassin de Nyanza. Distribution de l'amplitude w(x) de la seiche transversale uninodale (sans nœud longitudinal) en fonction des valeurs propres d'essai ω^2 adoptées successivement. Période propre : T $\simeq 20$ minutes.

$\mathbf{240}$

b) Seiche uninodale transversale, à un nœud longitudinal. Des essais, effectués comme plus haut à partir des points numérotés XXXIV et XXXV, ont conduit à retenir comme valeurs initiales respectives pour w(x): $w_{XXXIV} = 2,000$ et $w_{XXXV} = 1,700$ (en 10^n cm).

La valeur propre retenue comme « exacte » est : $\omega^2 = 0,320 \times 10^{-4} \ {\rm sec^{-2}}$ $(\lambda = 0,3272 \times 10^{-7} \ {\rm cm^{-1}})$, c'est-à-dire T=1110,7 sec. $\simeq 18$ min. 31 sec.

Section	$\omega^2/g\overline{h}$	$\mathbf{Q}(x)$	w(x)
nº			
	10^{-12} cm^{-2}	10^{-12} cm^{-2}	$10^n \mathrm{cm}$
-			(2,30124)
	6,67752	-4,96405	-1,50809
	3,02961	-1,38536	-3,44586
111	2,44178	-0,79753	-4,19019
	2,25654	-0,39083	-4,09907
v	2,09743	-0,14788	-3,60744
VI	1,80773	0.32739	-2.98244
VII	1,61181	0.42736	-2,60155
VIII	1,58067	0,06358	-2.49861
IX	1,65252	-0.29866	-2.43539
X	1.71308	-0.45420	-2.19033
			.,
XI	1,55809	-0.29921	-1.69656
XII	1,47387	-0.37725	-1.07588
XIII	1.42881	-0.46498	-0.35373
XIV	1,44140	-0.77555	0.40954
XV	1,46071	-0.71989	1.09341
	_,	.,	1,00011
XVI	1,49405	0,54512	1,58050
XVII	1,53615	0,04299	2,28298
XVIII	1,43508	-0,21961	3,01000
XIX	1,22546	-0,16421	3,57176
XX	1,04203	-0,10741	3,98688
XXI	0,90136	-0,07198	4,29494
XXII	0,71285	0,00809	4,52571
XXIII	0,60705	0,04184	4,76563
XXIV	0,64536	-0,14690	5,05540
XXV	0,68884	-0,29406	5,15951
XXVI	0 48331	-0.08047	4 88432
XXVII	0 37181	0,03925	4 51087
XXVIII	0 35799	-0.01314	4 18168
XXVIII	0,33135	-0,01514	3 83875
XXIX XXX	0,34314	-0.01316	3 45110
AAA	0,02200	0,01010	0,40110
XXXI	0,30268	0,02963	3,05210
XXXII	0,28879	0,03748	2,67571
XXXIII	0,27990	0,04637	2,32438
XXXIV	0,27751	0,04876	2,00000
XXXV	0,27823	0,04221	1,70000

Voici les résultats de ce dernier essai.

Section n ^o	$\omega^2/g\bar{h}$ 10^{-12} cm^{-2}	Q(x) 10^{-12} cm^{-2}	<i>w(x)</i> 10 ⁴ cm
XXXVI	0,27894	0,04150	1,41794
XXXVII	0,27800	0,06685	1,15059
XXXVIII	0,27706	0,10239	0,90247
XXXIX	0,28602	0,05244	0,67745
\mathbf{XL}	0,30637	-0,01298	0,46131
XLI	0,32525	-0,07257	0,24366
XLII	0,35526	-0,13207	0,02159

Il résulte de ces calculs que le bassin dit « de Nyanza » serait le siège de deux seiches transversales au moins : la première, sans nœud longitudinal (et transversalement uninodale), présente un maximum d'amplitude immédiatement au nord de l'étranglement de Rumonge; la seconde, à un nœud longitudinal, situé à 10 km environ au nord de cet étranglement (et elle aussi transversalement uninodale), présente deux maxima d'amplitude : le premier, peu au sud de l'extrémité nord du lac, le second à une dizaine de km au sud de Nyanza. La graphique ci-dessous (fig. 52) montre l'allure de la fonction w(x) correspondant à cette seiche, de période remarquablement voisine de la précédente : 18 min. 31 sec.

FIG. 52. — Lac Tanganika. Bassin de Nyanza. Distribution de l'amplitude w(x) de la seiche transversale uninodale (à un nœud longitudinal). Période propre : T $\simeq 18$ ½ minutes.

B. Bassin d'Albertville: — On a utilisé 23 divisions, de 10 en 10 km ($\Delta x = 10$ km).

Section	\boldsymbol{x}	$\overline{h} \equiv S/b$	b(x)	π^2/b^2
nº	km	m	km	10^{-12} cm^{-2}
I	162	1.160	55	0,32627
II	172	1.176	55	0,32627
III	182	1.178	53,5	0,34485
IV	192	1.132	54,5	0,33231
v	202	1.031	61	0,26524
VI	212	835	71,5	0,19307
VII	222	785	68	0,21344
VIII	232	583	66	0,22657
IX	242	479	63	0,24867
X	252	636	58,5	0,28842
XI	262	596	53	0,35136
XII	272	530	59,5	0,27880
XIII	282	486	66	0,22657
XIV	292	383	69,5	0,20434
XV	302	261	77	0,16646
XVI	312	300	75	0,17546
XVII	322	509	45	0,48739
XVIII	332	488	42	0,55950
XIX	342	514	40,5	0,60181
XX	352	563	49	0,41106
XXI	362	545	54	0,33846
XXII	372	608	51	0,37945
XXIII	382	449	77	0,16646

I. MICSUICS	1.	иези	res.
-------------	----	------	------

2. Résultats numériques.

Recherche des valeurs initiales $w(\alpha)$ et $w(\beta)$ et étude de la « queue » exponentielle amortie.

Prenons comme points initiaux les points portant les numéros V et IV, et avançons du sud au nord. Les valeurs correspondantes de w(x) choisies arbitrairement, comme il est expliqué page 234, sont imprimées en italique.

Valeur propre	d'essai	$: \omega^2 =$	$0,1115 \times$	10^{-4}	sec ⁻² .
---------------	---------	----------------	-----------------	-----------	---------------------

Section	$\omega^2/g \widetilde{h}$	$\mathbf{Q}(x)$		w(x)	
nº	10^{-12} cm^{-2}	10 ⁻¹² cm ⁻²		$10^n \mathrm{cm}$	
v			1,00000	1,00000	1,00000
\mathbf{IV}	0,10071	0,23160	0,65000	0,60000	0,61000
III	0,09678	0,24807	0,45466	0,35466	0,37466
II	0,09695	0,22932	0,37211	0,19730	0,23226
Ι	0,09828	0,22799	0,37489	0,08518	0,14312
[I'	0,10576	0,21468	(croît)	-0,00752	0,08661
ĪI'	0,12026	0,17828			0,04869
[III'	0,12955	0,28151			0,01945

Le dernier couple de valeurs initiales, fournissant la meilleure allure exponentielle amortie, sera retenu pour les calculs ultérieurs (du nord au sud).

Section	$\omega^2/g\overline{h}$	Q(x)	w(x)
nº	10^{-12} cm^{-2}	10^{-12} cm^{-2}	$10^n \mathrm{cm}$
I	0,09793	0,22834	0,04172
II	0,09660	0,22967	0,17537
III	0,09643	0,24842	0,34930
IV	0,10035	0,23196	0,61000
V	0,11018	0,15506	1,00000
VI	0,13605	0,05702	1,54506
VII	0,14471	0,06873	2,17822
VIII	0,19485	0,03172	2,96109
IX	0,23716	0,01151	3,83789
X	0,17862	0,10980	4,75886
XI	0,19060	0,16076	6,20235
XII	0,21434	0,06446	8,64293
XIII	0,23374	-0,00717	11,64063
XIV	0,29660	-0,09226	14,55487
XV	0,43524	-0,26878	16,12628
XVI	0,37867	-0,20321	13,36327
XVII	0,22318	0,26421	7,88471
XVIII	0,23278	0,32672	4,48937
XIX	0,22101	0,38080	2,56080
XX	0,20177	0,20929	1,60738
XXI	0,20844	0,13002	0,99037
XXII	0,18684	0,19261	0,50213
XXIII	0,25301	-0,08655	0,11061

Les essais ont conduit à retenir comme satisfaisante la valeur $\omega^2=0,1111$ × 10^{-4} sec.⁻² (T \simeq 1885 sec. = 31 min. 25 sec.). On a le tableau suivant :

A titre de comparaison, voici les graphiques des courbes obtenues avec $\omega^2 = 0,1111 \times 10^{-4} \text{ sec}^{-2}$ (courbe I) et $\omega^2 = 0,1115 \times 10^{-4} \text{ sec}^{-2}$ (courbe II); l'allure de la seconde ne permet pas de la considérer comme satisfaisante.

FIG. 53. — Lac Tanganika. Bassin d'Albertville. Distribution de l'amplitude w(x) de la seiche transversale uninodale (sans nœud longitudinal). Période propre : T \simeq 31 $\frac{1}{2}$ minutes.

C. Bassin de Moba. — On a utilisé 19 divisions, de 10 en 10 km ($\Delta x = 10$ km).

Section	x	$\overline{h} \equiv \mathrm{S}/b$	b(x)	π^2/b^2
nº	km	m	km	10^{-12} cm^{-2}
Ι	313	300	75	0,17546
II	323	509	45	0,48739
III	333	488	42	0,55950
IV	343	514	40,5	0,60180
V	353	565	48	0,42837
VI	363	544	54	0,33846
VII	373	608	51	0,37945
VIII	383	449	77	0,16646
IX	393	457	79	0,15814
X	403	473	74	0,18023
XI	413	431	74,5	0,17782
XII	423	431	74,5	0,17782
XIII	433	429	70,5	0,19857
XIV	443	500	64	0,24096
XV	453	669	61,5	0,26095
XVI	463	790	59,5	0,27880
XVII	473	1.024	50	0,39478
XVIII	483	1.165	45,5	0,47673
XIX	493	1.050	52,5	0,35811

1. Mesures.

2. Résultats numériques.

Recherche des valeurs initiales $w(\alpha)$ et $w(\beta)$, et étude de la « queue » exponentielle amortie. Prenons comme points initiaux les points numérotés V et IV et calculons w(x) en allant du sud au nord. Les valeurs correspondantes de w(x)sont choisies arbitrairement, comme d'habitude.

Valeurs d'essai : $\omega^2 = 0,1136 \times 10^{-4} \text{ sec}^{-2}$.

Section n ^o	$\omega^2/g\overline{h}$ $10^{-12} \mathrm{~cm}^{-2}$	Q(x) 10^{-12} cm^{-2}		<i>w(x)</i> 10 ^{<i>n</i>} cm	,
V IV III I I [I ⁷ [II ⁷ [IV ⁷ [V ⁷ [VI ⁷	0,22598 0,23802 0,22820 0,38718 0,44504 0,30328 0,23900 0,21431 0,19555 0,18496	$\begin{array}{c} 0,37582\\ 0,32148\\ 0,25919\\ -0,21172\\ -0,27858\\ -0,09894\\ -0,01242\\ 0,05985\\ 0,16256\\ 0,11358\\ \end{array}$	1,00000 0,80000 0,90066 1,29086 2,01564 2,31367 1,96716 1,42602 0,86717 0,36022 -0,08817	1,00000 0,54000 0,28294 0,11684 -0,01898	1,00000 0,62000 0,47301 0,47808 0,60706 0,60751 0,43872 0,22652 0,01151

Le second couple de valeurs initiales donne à la courbe w(x) une allure exponentielle amortie satisfaisante et sera retenu pour les calculs ultérieurs. Des essais ultérieurs conduisent à retenir comme satisfaisante la valeur $\omega^2 = 0,1126 \times 10^{-4} \text{ sec}^{-2}$ ($\lambda = 0,115 \times 10^{-7} \text{ cm}^{-1}$), c'est-à-dire T = 1872 sec. = 31 min. 12 sec.

Section	$\omega^2/gar{h}$	Q(x)	w(x)
nº	10^{-12} cm^{-2}	10^{-12} cm^{-2}	$10^n \mathrm{cm}$
I	0,38377	-0,20831	-0,01285
II	0,22619	0,26120	0,11992
III	0,23592	0,32358	0,28401
IV	0,22399	0,37781	0,54000
V	0,20378	0,22459	1,00000
VI	0,21164	0,12682	1,68459
VII	0,18937	0,19008	2,58282
VIII	0,25642	-0,08996	3,97199
IX	0,25193	-0,09379	5,00384
X	0,24341	-0,06318	5,56638
XI	0,26713	-0,08930	5,77724
XII	0,26713	-0,08930	5,47219
XIII	0,26838	-0,06980	4,67847
XIV	0,23026	0,01070	3,55819
XV	0,17210	0,08886	2,47598
XVI	0,14574	0,13306	1,61379
XVII	0,11243	0,28235	0,96633
XVIII	0,09882	0,37797	0,51971
XIX	0,10965	0,24846	0,44074

On a ainsi le tableau suivant :

A titre de comparaison, voici les graphiques des courbes obtenues avec $\omega^2=0,1126\times 10^{-4}~{\rm sec^{-2}}$ (courbe I), $\omega^2=0,1136\times 10^{-4}~{\rm sec^{-2}}$ (courbe II), et $\omega^2=0,1120\times 10^{-4}~{\rm sec^{-2}}$ (courbe III).

Seule la première valeur propre peut être considérée comme satisfaisante.

FIG. 54. — Lac Tanganika. Bassin de Moba. Distribution de l'amplitude w(x) de la seiche transversale uninodale (sans nœud longitudinal). Période propre : $T \simeq 31 \frac{1}{2}$ minutes,

D. Bassin de Kala. — On a utilisé 20 divisions, de 10 en 10 km ($\Delta x = 10$ km).

Section	x	$\overline{h} \equiv \mathrm{S}/b$	b(x)	π^2/b^2
$\mathbf{n}^{\mathbf{o}}$				
-	km	m	km	10^{-12} cm^{-2}
I	480	1.141	46	0,46643
II	490	1.098	48	0,42837
III	500	1.017	52,5	0,35811
IV	510	1.128	52,5	0,35811
V	520	1.139	51	0,37945
VI	530	1.038	52	0.36500
VII	540	882	52	0,36500
VIII	550	812	50.5	0.38704
IX	560	741	47	0,44679
X	570	646	42.5	0,54649
				.,
XI	580	561	42,5	0,54649
XII	590	529	44	0,50979
XIII	600	511	48,5	0,41963
XIV	610	371	69,5	0,20434
XV	620	350	50	0,39478
XVI	630	287	46	0,46643
XVII	640	209	39,5	0,63267
XVIII	650	160	35	0,80568
XIX	660	91	32,5	0,93462
XX	670	79	19	2,73397
	·			

1. Mesures.

2. Résultats numériques.

a) Seiche uninodale transversale, sans nœud longitudinal. Recherche des valeurs initiales $w(\alpha)$ et $w(\beta)$ et étude de la « queue » exponentielle amortie. Prenons comme points initiaux ceux numérotés VIII et VII, et calculons w(x) en allant du sud au nord.

Section n ^o	$\frac{\omega^2/g\bar{h}}{10^{-12} \mathrm{cm^{-2}}}$	Q(x) 10^{-12} cm^{-2}	<i>w</i> (<i>x</i>) 10 ^{<i>n</i>} cm		
VIII	0,18586	0,20118	1,00000	1,00000	1,00000
VII	0,17111	0,19389	0,64000	0,63000	0,63500
VI	0,14540	0,21960	0,40409	0,38215	0,39312
V	0,13250	0,24695	0,25692	0,21822	0,23757
IV	0,13379	0,22432	0,17320	0,10818	0,14069
III	0,14840	0,20971	0,12833	0,02083	0,07537
II	0,13745	0,29092	0,11037	—	0,02586
I	0,13227	0,33416	—	—	—

Valeur d'essai : $\omega^2 = 0.1476 \times 10^{-4} \text{ sec}^{-2}$.

On retiendra comme satisfaisant le troisième couple de valeurs arbitraires. De nouveaux essai conduisent alors à la valeur propre déjà trouvée : $\omega^2 = 0.1476 \times 10^{-1} \text{ sec}^{-2}$ ($\lambda = 0.1509 \times 10^{-7} \text{ cm}^{-1}$), c'est-à-dire T $\simeq 1.635$ sec. = 27 min. 15 sec.

Section ω^2/gh Q(x)w(x)nº 10^{-12} cm^{-2} 10^{-12} cm^{-2} 10ⁿ cm I 0,13227 0,33416 0,13745 0,29092 \mathbf{II} 0,02586 III 0,14840 0,20971 0,07537 1V 0.13379 0,22432 0,14069 0,23757 V 0,13250 0,24695 VI 0,14540 0,21960 0,39312 0,63500 VII 0,17111 0,19389 VIII 0.18586 0,20118 1,00000 \mathbf{IX} 0,20367 0,24312 1,56618 0,31287 Х 0,23362 2,51513 0,26902 0,27747 XI 4,25099 XII 0,28529 0,22450 7,16637 XIII 0,29534 0,12429 11,69060 XIV 0,40679 -0,2024517,66785 20,06825 XV -0,036410,43120 -0,05942 XVI 21,73797 0,52585 XVII 0,72211 -0,08944 22,11602 XVIII -0,13757 20,51601 0,94325 -0,72384 16,09361 XIX 1,65846 XX 0,02201 7,94317

D'où le tableau suivant :

Comme on peut s'en rendre compte sur le graphique (cf. p. 250), la décroissance exponentielle est très nette vers le nord, mais beaucoup moins marquée vers le sud. Comme le lac se rétrécit fortement vers le sud, en même temps que sa profondeur diminue rapidement, on peut considérer comme satisfaisant le comportement de la fonction w(x) en cet endroit.

b) Seiche binodale transversale.

Outre ses deux nœuds transversaux, le seiche ici calculée présente encore un nœud longitudinal. Comme on le verra plus loin, l'apparition de ce nœud longitudinal s'explique par l'incurvation des lignes nodales transversales qui rencontrent les rives du lac (cf. notamment fig. 65, p. 262).

A cause des deux nœuds transversaux, on a

$$Q(x) = \frac{4 \pi^2}{b^2(x)} - \frac{\omega^2}{g \overline{h}(x)}.$$

Recherche des valeurs initiales $w(\alpha)$ et $w(\beta)$ et étude de la « queue » expo-

nentielle amortie. Prenons à nouveau comme points initiaux ceux numérotés VIII et VII, et calculons w(x) en allant du sud au nord.

Section n ^o	$\frac{\omega^2/g\overline{h}}{10^{-12} \text{ cm}^{-2}}$	Q(x) 10^{-12} cm^{-2}		<i>w</i> (<i>x</i>) 10 ^{<i>n</i>} cm	
VIII	0,69333	0,85483	1,00000	1,00000	1,00000
VII	0,63831	0,82169	0,41000	0,41300	0,41200
VI	0,54238	0,91762	0,15689	0,16536	0,16254
V	0,49428	1,02354	0,04775	0,06946	0,06223
IV	0,49910	0,93335	(négatif)	0,04466	0,02561
III	0,55357	0,87888	—	0,06154	0,01289
I	0,51274	1,20073	—	(croît)	—
I	0,49341	1,37230	—	—	—

Valeur d'essai : $\omega^2 = 0,5506 \times 10^{-4} \text{ sec}^{-2}$.

L'allure prise par la fonction w(x) pour le dernier couple de valeurs initiales est satisfaisante. Ces valeurs initiales seront donc réutilisées pour le calcul de w(x) des points VIII à XX.

La valeur propre non plus ne nécessite pas de nouvel ajustement. On aura donc le tableau final suivant :

Section	$\omega^2/g \overleftarrow{h}$	$\mathbf{Q}(x)$	w(x)
11	10^{-12} cm^{-2}	10^{-12} cm^{-2}	10 ⁿ cm
1	0,49341	1,37230	
II	0,51274	1,20073	
III	0,55357	0,87888	0,01289
IV	0,49910	0,93335	0,02561
V	0,49428	1,02354	0,06223
VI	0,54238	0.91762	0,16254
VII	0.63831	0.82169	0.41200
VIII	0,69333	0,85483	1,00000
IX	0.75976	1.02740	2.44283
X	0,87149	1,31447	6,39542
XI	1,00354	1.18242	18,75460
XII	1,06425	0.97491	53, 28959
XIII	1,10173	0.57679	139.77713
XIV	1.51748	-0.70012	306.88672
XV	1,60853	-0,02941	259,13878
XVI	1,96162	-0.09590	203,76957
XIII	2,69371	-0.16303	128,85886
XVIII	3,51866	-0.29594	32,94029
XIX	6 18666	-2 44818	-72 72663
XX			-0,34567

$\omega^2 = 0.5506 \times 10^{-4} \mathrm{sec^{-2}}$	$(\lambda = 0.5630 imes 10^{-7} { m cm^{-1}})$) c'est-à-diré	T = 847 sec =	= 14 min.	7 sec.
---	--	----------------	----------------	-----------	--------

Comme pour la seiche uninodale calculée précédemment, l'allure exponentielle amortie de w(x) n'est bien marquée que vers le nord; vers le sud au contraire, la fonction w(x) reste nettement oscillante, mais étant donné la forme particulière du lac en cette région, le résultat obtenu reste acceptable physiquement; w(x) du reste s'annule pratiquement à l'extrémité sud du lac.

FIG. 55. — Lac Tanganika. Bassin de Kala.

Orthogonalité des fonctions w(x).

Considérons l'équation en w(x), où le nombre de nœuds transversaux est r; ce nombre sera employé comme indice pour distinguer les différentes « classes » de fonctions et de valeurs propres :

$$w_r'' + \left\{ \frac{\omega_r^2}{g\overline{h}(x)} - \frac{r^2 \pi^2}{b^2(x)} \right\} w_r = 0,$$

avec les conditions-frontière habituelles de décroissance exponentielle de w_r vers les extrémités du bassin.

L'équation étant auto-adjointe seulement pour chaque « classe » de fonctions et de valeurs propres possédant le même nombre de nœuds transversaux (¹⁰⁵), il n'y aura d'orthogonalité qu'entre fonctions w_{rs} qui diffèrent par le nombre

(105) Cf. COLLATZ, L., Eigenwertprobleme, p. 59.

PLANCHE V. — Lac Tanganika. Régions d'activité des seiches transversales.

Bassin de Nyanza : A 1 : seiche uninodale (transversalement) et zéro-nodale (longitudinalement); A 2 : uninodale-uninodale.

Bassin d'Albertville : B : uninodale-zéro-nodale.

Bassin de Moba : C : uninodale-zéro-nodale.

Bassin de Kala : D1 : uninodale-zéro-nodale; D2 : binodale-uninodale.

N.B. — Le tracé du contour du lac est inexact en ce qui concerne la baie de Burton et la presqu'île d'Ubwari (cf. Pl. II et fig. 19). de leurs nœuds longitudinaux s et possèdent le même nombre de nœuds transversaux r; on aura, pour des fonctions normées :

$$(ss') \equiv \int \frac{w_{rs} w_{rs'}}{\overline{h}(x)} dx = \begin{cases} 0 & (s' \neq s). \\ 1 & (s' = s). \end{cases}$$

Les valeurs propres $\lambda \equiv \omega^2/g$ peuvent ainsi être distinguées à l'aide de deux indices, et de même les périodes : λ_{rs} et T_{rs} . Avec ces notations, les fonctions w(x) et les périodes T calculées ci-dessus sont donc : w_{10} et T_{10} pour les bassins d'Albertville et de Moba; w_{10} et w_{21} , T_{10} et T_{21} pour celui de Kala; w_{10} et w_{11} , T_{10} et T_{11} enfin pour celui de Nyanza. La vérification de l'orthogonalité des fonctions w(x) ne peut donc avoir lieu que pour le bassin de Nyanza. On a trouvé : (0,1) = 0,029, ce qui indique une orthogonalité satisfaisante.

La planche V représente une carte du lac, où les zones hachurées représentent les régions d'activité des seiches transversales calculées dans ce § 2.

§ 3. CALCUL DES SEICHES PAR LA NOUVELLE MÉTHODE DES COORDONNÉES CURVILIGNES.

A. Bassin de Nyanza. — On a tracé empiriquement (voir carte ci-après) onze courbes d'égale dénivellation ($\zeta = \text{const.}$), formant une famille $\psi = \text{const.}$ et délimitant douze compartiments numérotés en chiffres arabes.

Comme au \$ 2, les régions rognées pour le calcul des seiches longitudinales ont été, le cas échéant, rétablies pour le calcul des seiches transversales.

Section	Δv	v	S	$\Delta \overline{\psi}$
nº	km²	km²	$\rm km^2$	km
1 2 2	118 162	118 280 603	12,50 23,09 35,49	6 4,5
4	403	1.006	50,04	5,5
5	422		72,16	5
6	403	$\begin{array}{c} 1.831 \\ 2.166 \\ 2.610 \\ 3.111 \\ 3.457 \end{array}$	73,12	4,5
7	335		74,91	4
8	444		75,37	4,5
9	501		73,94	5,5
10	346		43,30	5
11	204	$\begin{array}{c} 3.661\\ 3.734\end{array}$	18,75	5
12	73		0	4

1. Mesures.

FIG. 56. — Lac Tanganika. Bassin de Nyanza. Carte bathymétrique.

1-11 : Divisions utilisées pour le calcul de la seiche transversale uninodale de 18 minutes, par coordonnées curvilignes.

[12-27 : Divisions utilisées pour le calcul des seiches longitudinales; cf. pp. 110 sqq.]

2. Résultats numériques.

Valeur	d	'essai	:	λ	 35.70	$\times 10^{-9}$	cm^{-1}
, arour	· • •	UUUU	•		 	· · · ·	UIII

Section nº	ζ	u	φ	Δζ
	em	10 ⁶ m ³	m	cm
1	100,0000	118,0000	9,4400	-20,2205
2	79,7795	247,2428	10,7078	-17,2021
3	62,5774	449,3678	12,7698	-22,7940
4	39,7834	609,6949	12,1842	-23,9237
5	15,8797	676,6228	9,3767	-16,7374
6	- 0,8577	673,1663	9,2063	-14,7899
7	-15,6476	620,7468	8,2866	-11,8333
8	-27,4809	498,7316	6,6171	-10,6303
9	-38,1112	307,7945	4,1628	- 8,1737
10	-46,2849	147,6487	3,4099	- 6,0866
11	-52,3715	40,8108	2,1766	- 3,8852
12	-56,2567	- 0,2566	_	· _

Un essai précédent, avec $\lambda = 35,72 \times 10^{-9}$ cm⁻¹, avait laissé un « résidu » $u_{12} = 1,1718 \times 10^{6}$ m³. Extrapolant linéairement, on obtient la valeur « améliorée » $\lambda = 35,694 \times 10^{-9}$ cm⁻¹, d'où T = 1.063,4 sec. = 17 min. 43 sec., soit environ 12 % de moins que par la méthode de l'équation en w(x), qui donnait T=1.213 sec. = 20 min. 13 sec. L'accord est satisfaisant, compte tenu du fait que la seiche calculée ici est nettement plus locale que celle étudiée pp. 236-240 (ceci à cause de la difficulté de tracer les courbes $\zeta = \text{const.}$ autour du seuil de Rumonge); il s'agit peut-être ici de la « branche » sud de la se c on d e transversale, de 18 $\frac{1}{2}$ min, calculée pp. 241-242.

Voici un graphique du profil de la seiche étudiée.

FIG. 57. — Lac Tanganika, Bassin de Nyanza. Profil de la seiche transversale uninodale de 18 minutes.

On remarquera que la dénivellation est environ deux fois plus forte à l'est qu'à l'ouest, ce qui est entièrement conforme à ce que l'on peut s'attendre à

observer, si l'on examine les courbes bathymétriques du lac : à l'est les côtes sont en pente douce et le lac est peu profond, tandis qu'à l'ouest la côte est constituée par une paroi rocheuse fortement inclinée et le lac est plus profond.

Sous ce rapport, la seconde méthode fournit donc une bien meilleure représentation de la seiche que la première, celle-ci supposant à priori que le profil est parfaitement sinusoïdal entre les deux rives opposées du lac.

Il est remarquable qu'en dépit de cette divergence initiale les deux méthodes fournissent des périodes d'oscillation fondamentale aussi voisines.

Voici encore, pour terminer l'étude du mode fondamental du bassin de Nyanza, le graphique de la fonction propre u(v) de ce mode.

FIG. 58. — Lac Tanganika. Bassin de Nyanza. Fonction propre u(v) du mode fondamental transversal.

B. Bassin d'Albertville. — La forme très particulière de ce bassin rend malaisé le tracé des courbes d'égale dénivellation ($\zeta = \text{const}$) formant une famille $\psi = \text{const}$. Sur la carte ci-après, on a délimité seize compartiments, mais à la suite d'une erreur matérielle, on a dû renverser le sens de leur numérotation dans la table ci-dessous, ainsi que dans les calculs qui suivent. De plus, les compartiments 1 et 2 seront traités comme n'en formant qu'un seul. Le caractère arbitraire et discutable du tracé des courbes d'égale dénivellation exige que les résultats ci-après ne soient acceptés qu'avec réserve, bien que tout autre tracé eût probablement appelé la même remarque.

Section nº	Δv	v	S	$\Delta \overline{\psi}$
	km²	km²	km²	km
45	474	4.77 6	1 495	7
13	220	394	9.31	6
13	239	633	15,40	5,2
12	246	879	21,37	5
11	259	1.138	27,95	4,8
10	274	1.412	30,31	4,5
9	367	1.779	45,92	5,2
L	[

1		М	P	s	11	\mathbf{r}	P	S	
-	••	TAT	U	5	u	н.	U	D,	

FIG. 59. — Lac Tanganika. Bassin d'Albertville. Carte bathymétrique.
1-15 : Divisions utilisées pour le calcul de la seiche transversale uninodale de 36 minutes, par coordonnées curvilignes.

[27-49 : Divisions utilisées pour le calcul des seiches longitudinales; cf. pp. 110 sqq.]

255

F. SERVAIS. — ÉTUDE THÉORIQUE

Section n ^o	Δv	v	8	$\Delta \overline{\psi}$
	$\rm km^2$	km ²	km²	km
8	400	2.179	64,98	5,2
7	410	2.589	63,14	5
6	400	2.989	52,35	5
5	442	3.431	25.10	5.5
4	360	3.791	13.19	5.5
3	250	4.041	7,50	5
2.1	185	4.226	4,312	5
Ó	332	4.558	0	6

2. Résultats numériques.

Section n ^o	ζ	u	φ	Δζ
	cm	10 ⁶ m ³	m	em
15	100,0000	174,0000	39,322	-23,3415
14	76,6585	342,6487	36,804	-18,7259
13	57,9326	481,1076	31,241	-13,7760
12	44,1566	589,7328	27,596	-11,7007
11	32,4559	673,7936	24,107	- 9,8125
10	22,6434	735,8365	24,277	- 9,2641
9	13,3793	784,9385	17,094	- 7,5378
8	5,8415	808,3045	12,439	- 5,4851
7	0,3564	809,7657	12,825	- 5,4378
6	- 5,0814	789,4401	15,080	- 6,3939
5	- 11,4753	738,7193	29,431	-13,7266
4	- 25,2019	647,9925	49,128	-22,9133
3	- 48,1152	527,7045	70.361	-29,8331
2,1	- 77,9483	383,5002	88,938	-37,7097
0	-115,6580	- 0,4844		

Essai avec $\lambda = 8,48 \times 10^{-9} \ \mathrm{cm^{-1}}.$

Le « résidu » u_0 étant satisfaisant, on ne cherchera pas à améliorer λ par interpolation. La période correspondante est : T = 2.181,8 sec. \simeq 36 min. 22 sec.

L'accord est médiocre avec le résultat obtenu par la méthode de l'équation en w(x) (T = 1.882 sec. = 31 min. 25 sec.); l'écart atteint environ 16 % par excès.

Voici le graphique du profil de la seiche et celui de la fonction propre u(v) du mode étudié.

On remarque que les dénivellations sont sensiblement les mêmes à l'est qu'à l'ouest, conformément à ce que l'on peut attendre si l'on examine les courbes isobathes du lac.

FIG. 60. — Lac Tanganika. Bassin d'Albertville. Profil de la seiche uninodale transversale de 36 minutes.

FIG. 61. — Lac Tanganika. Bassin d'Albertville. Fonction propre u(v) du mode fondamental transversal.

.

FIG. 62. — Lac Tanganika. Bassin de Moba. Carte bathymétrique.
1-13 Divisions utilisées pour le calcul de la seiche transversale uninodale de 30 minutes, par coordonnées curvilignes.
[49-66 : Divisions utilisées pour le calcul des seiches longitudinales; cf. pp. 110 sqq.]

C. Bassin de Moba. — On a tracé treize courbes d'égale dénivellation $(\zeta = \text{const.})$ numérotées d'est en ouest (cf. fig. 62).

Section n ^o	Δv	v	S	$\Delta \overline{\psi}$
	km²	km ²	km ²	km
1	173	173	2,737	6
2	235	408	8,262	5
3	398	806	16,11	5
4	555	1.361	. 39,44	6
5	676	2.037	70,62	6,5
6	650	2.687	81,06	6,5
7	702	3.389	83,50	6,5
8	620	4.009	83,82	6
9	631	4.640	62,25	6
10	540	5.180	49,45	6
11	392	5.572	42,75	5
12	352	5.924	32,27	5,5
13	243	6.167	18,45	5
14	102	6.269		

1. Mesures.

2. Résultats numériques.

Essai avec $\lambda\!=\!12,\!125\!\times\!10^{-9}$ cm^-, c'est-à-dire T=1.824,6 sec. $\simeq 30$ min 25 sec.

Section n ^o	ζ	u	φ	Δζ
	cm	10 ⁶ m ³	m	cm
1	100.0000	173,0000	63,2079	-45,9837
2	54,0163	299,9383	36,3034	-22,0089
3	32,0074	427, 3278	26,5256	-16,0811
4	15,9263	515,7188	13,0760	- 9,5128
5	6,4136	559,0747	7,9167	- 6,2393
6	0,1743	560,2076	6,9110	- 5,4467
7	- 5,2724	523,1954	6,2658	- 4,9382
8	-10,2106	459,8897	5,4866	- 3,9915
9	-14,2021	370,2745	5,9482	- 4,3273
10	-18,5294	270,2157	5,4644	- 3,9753
11	-22,5047	181,9973	4,2572	- 2,5809
12	-25,0856	93,6960	2,9035	- 1,9363
13	-27,0219	28,0328	1,5194	- 0,9211
14	-27,9430	- 0.4691	-	

Un essai précédent, effectué avec $\lambda = 12,00 \times 10^{-9}$ cm⁻¹, ayant laissé un « résidu » u_{14} de 14,6151 × 10⁶ m³, l'écart est trop considérable pour permettre une interpolation linéaire destinée à améliorer le λ trouvé ici; ce dernier sera donc considéré comme « exact ».

L'accord est fort satisfaisant avec le résultat trouvé par la méthode de l'équation en w(x) (T=1.872 sec.=31 min. 12 sec.), puisque l'écart n'est que de 2 %.

Voici le graphique du profil de la seiche. Comme pour le bassin de Nyanza, l'amplitude de la dénivellation est beaucoup plus forte que sur la côte est (pente douce) que sur la côte ouest (parois plus abruptes).

FIG. 63. — Lac Tanganika. Bassin de Moba. Profil de la seiche transversale uninodale de 30 minutes.

Enfin, pour terminer l'étude du bassin de Moba, donnons encore le graphique de la fonction propre de la seiche qui vient d'être calculée.

FIG. 64. — Lac Tanganika. Bassin de Moba. Fonction propre u(v) du mode fondamental transversal.

FIG. 65. — Lac Tanganika. Bassin de Kala. Carte bathymétrique.

1-10 : Divisions utilisées pour le calcul de la seiche transversale uninodale de 27 minutes, par coordonnées curvilignes.

[73-90 : Divisions utilisées pour le calcul des seiches longitudinales; cf. pp. 110 sqq.]

[I-XIII : Anciennes divisions ayant servi à des calculs de seiches transversales par la méthode de l'équation en w(x), non repris dans ce travail; I-XII (anciennes) correspondent à IX-XX (nouvelles, cf. p. 247)].

261

D. Bassin de Kala. — On a tracé au juger dix lignes d'égale dénivellation, numérotées d'est en ouest.

Les mesures se rapportent aux divisions « principales » (à l'aide desquelles seules on a calculé la seiche uninodale); en effet, pour calculer la binodale, on a eu recours à des divisions « secondaires », pour lesquelles S et v ont été calculées par interpolation linéaire, chaque division secondaire étant située à mi-distance des deux divisions principales avoisinantes. Ces valeurs interpolées sont en italique, et numérotées 1a, 2a, etc.

Section n ^o	Δα	y 2	v	S	$\Delta\overline{\psi}$
	km²		Km²	ĸm"	km
1 1a 2	130 145 145	290	130 275 420	3,4375 11,1875 18,937	4 3 3
2a	195		615	23,869	2,5
3 3a 4 5 5 5 6 6	195 250 250 278 279 282 283 283	390 500 557 565	810 1.060 1.310 1.588 1.867 2.149 2.432 2.677	28,800 $35,412$ $42,025$ $49,919$ $57,812$ $53,969$ $50,125$ $45,937$	3 3 3 3 3 3 3 3 3 3 3 3 3 3
7	245	490	2.922	41.750	3
7a 8 8a	184 185 129	369 258	3.106 3.291 3.420	31,781 21,812 17,725	3 3 3
9 9a 10	129 101 102	203	3.549 3.650 3.752	13,637 <i>8,8437</i> 4,050	3 3 3,5
11	210		3.962	0	4

1. Mesures.

2. Résultats numériques.

a) Seiche uninodale. Essai avec $\lambda_1 = 15,11 \times 10^{-9}$ cm⁻¹, c'est-à-dire T₁=1.634,5 sec. $\simeq 27$ min. 15 sec.

Section nº	ζ	u	φ	Δζ
	em	10 ⁶ m ³	m	cm
1	100,0000	130,0000	37.8182	- 22.8573
2	77,1427	353,7138	18,6780	- 16,9335
3	60,2092	588,5297	20,4351	- 16,9826
4	43,2266	804,6627	19,1472	- 17,3589

 $\mathbf{262}$

Section nº	ζ	u	 φ	Δζ
	em	10 ⁶ m ³	m	cm
5	25,8677	948,7458	16,4107	- 14,8779
6	10,9898	1.010,8382	20,1663	- 18,2828
7	- 7,2930	975,1025	23,3557	- 21,1743
8	- 28,4673	870,0582	39,8881	- 36,1626
9	- 64,6299	703,3131	51,5720	- 46,7552
10	-111,3851	477,2013	117,8275	-115,7243
11	-227,1094	0,2716		

Le « résidu » u_{11} étant pratiquement négligeable, la valeur propre essayée sera considérée comme « exacte ». La période obtenue est en parfait accord avec celle obtenue par le premier procédé ($T_1 = 1.635, 4$ sec. $\simeq 27$ min. 15 sec.).

On trouvera plus loin des graphiques de la dénivellation ζ et de la fonction propre u(v) de ce premier mode.

b) Seiche binodale.

Essai avec $\lambda_2=32,40\times 10^{-9}~{\rm cm^{-1}},$ c'est-à-dire $T_2=1.116,2$ sec. $\simeq 18$ min. 36 sec.

Section n ^o	ζ	u	φ	Δζ
	cm	10 ⁶ m ³	m	cm
1	100.0000	130,0000	37.8182	-49.0124
1a	50,9876	203,9320	18,2286	-17,7182
2	33,2694	252,1726	13,3160	-12.9432
2a	20,3262	291,8087	12,2256	- 9,9027
3	10,4235	312,1345	10,8380	-10,5345
3 <i>a</i>	- 0,1110	311,8570	8,8064	- 8,5598
4	- 8,6708	290,1800	6,9049	- 6,7116
4 <i>a</i>	-15,3824	247,4172	4,9564	- 4,8176
5	-20,2000	191,0592	3,3048	- 3,2123
5 a	-23,4123	125,0365	2,3168	- 2,2519
6	-25,6642	52,4068	1,0455	- 1,0162
6 a	-26,6804	- 12,9602	- 0,2821	0,2742
7	-26,4062	- 77,6554	- 1,8600	1,8079
7a	-24,5983	-122,9163	- 3,8676	3,7593
8	-20,8390	-161,4684	- 7,4026	7,1953
8 a	-13,6437	-179,0688	-10,1026	9,8197
9	- 3,8240	-184,0018	-13,4923	13,1145
9a	9,2905	-174,6184	-19,7449	19,1920
10	28,4825	-145,5663	-35,9423	40,7586
11	69.2411	- 0.1602	· · ·	

L'écart entre la période ici obtenue ($T_2 = 1.116$ sec.) et celle calculée par le premier procédé ($T_2 = 847$ sec.) est considérable — de l'ordre de 24 % par rapport au dernier résultat ($T_2=1.116$ sec.). Les conditions de lente variation de *b* et de *b'* étant médiocrement satisfaites dans le bassin de Kala (cf. pp. 230 sqq.), on considérera la période trouvée par la méthode des coordonnées curvilignes comme plus probable que celle obtenue par l'équation en w(x) (pp. 248-250).

Les graphiques ci-après représentent les profils des deux seiches qui viennent d'être calculées, et les fonctions propres correspondantes. En ce qui concerne les profils, on remarquera une fois de plus les rapports des amplitudes de ζ sur les côtes est et ouest : les bas-fonds de la côte ouest ont pour effet d'exalter considérablement les dénivellations.

FIG. 66. — Lac Tanganika. Bassin de Kala. Profils des seiches transversales uninodale ($T_1 \simeq 27$ min.) et binodale ($T_2 \simeq 18$ min).

FIG. 67. — Lac Tanganika. Bassin de Kala. Fonctions propres $u_1(v)$ et $u_2(v)$ des deux premiers modes normaux transversaux.

264

c) Orthogonalité.

Comme pour les modes normaux longitudinaux calculés dans la première partie, on devra avoir ici, pour des fonctions normées :

$$\int_{0}^{a} \frac{u_{i} u_{j}}{\sigma(v)} dv = \begin{cases} 0 & (i \neq j), \\ 1 & (i = j), \end{cases}$$

ou, plus simplement (en désignant ici par l la largeur « moyenne » de la portion de lac considérée) :

$$\int_{0}^{1} u_{i} \overline{\varphi_{j}} d\overline{\psi} = \begin{cases} 0 & (i \neq j). \\ 1 & (i = j). \end{cases}$$

Vérifions si ces relations ont lieu pour les deux modes calculés. On a calculé séparément, à titre de contrôle, $u_1 \overline{\varphi}_2$ et $u_2 \overline{\varphi}_1$; les intervalles étant pratiquement égaux (à l'exception du premier, traité séparément, comme un triangle), on peut appliquer la règle de SIMPSON.

Il vient ainsi :

$$\int_{0}^{l} u_{1} \overline{\varphi_{1}} d\overline{\Psi} = 11.106,2208 \times 10^{14} \text{ m}^{5};$$

$$\int_{0}^{l} u_{2} \overline{\varphi_{2}} d\overline{\Psi} = 931,5842 \times 10^{14} \text{ m}^{5};$$

$$\int_{0}^{l} u_{1} \overline{\varphi_{2}} d\overline{\Psi} = -94,2080 \times 10^{14} \text{ m}^{5} = \int_{0}^{l} u_{2} \overline{\varphi_{1}} d\overline{\Psi}$$

Le quotient du dernier nombre par la norme, produit des racines carrées des deux premiers nombres, égale -0.0293, résultat qui permet de conclure à une orthogonalité satisfaisante.

CHAPITRE IV.

« SHELF-SEICHES », « EDGE-WAVES » DE STOKES, « BANK-SEICHES » ET SEICHES DANS LES DÉTROITS.

Les quatre « types » d'oscillations étudiés dans ce dernier chapitre ne présentent entre eux qu'une parenté assez lointaine, et c'est plutôt pour la commodité qu'on les a réunis ici.

Ainsi, tandis que les « shelf-seiches », « bank-seiches » et seiches de détroits sont des ondes du type marée, les « edges-waves » de STOKES au contraire appartiennent au type des ondes de surface (cf. p. 17). Les « bank-seiches »,